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Abstract— In this paper a fuzzy Improved Runge-Kutta method   

for solving first-order fuzzy differential equations is proposed. 

The scheme is two step in nature and  is based on the Improved 

Runge-kutta method for solving ordinary differential equations. 

Here, the fourth order method  with three stages is explained. In 

this method some new parameter be exploited to increase the 

accuracy in comparison with other same stage existing methods. 

The convergence of the method is proven, and several numerical 

examples are experienced to illustrate the effectiveness of the 

method. 

Keywords- Fuzzy Improved Runge-Kutta method, Fuzzy differential 

equations, Two step method, Improved Runge-Kutta method, 

Seikkala derivative.         

 Introduction  

Fuzzy Differential Equations (FDEs) are used for 
modelling the problems in science and engineering. Most of the 
problems require the solution of FDEs which satisfied fuzzy 
initial conditions. The concept of fuzzy derivative was first 
introduced by Chang and Zadeh [1], later Dubois and Prade [2] 
proposed the extension principle for solving FDEs. It is 
difficult to find the exact solution of FDEs therefore several 
numerical methods were developed to address this problem. 
Abbasbandy and Allahviranloo [3] developed numerical 
algorithm for solving fuzzy differential equations based on 
Seikkala's work [4]. Ahmad and Hasan [5] presented a new 
fuzzy version of Euler's method for solving FDEs with fuzzy 
initial values. In this paper the Improved Runge-kutta method 
of order four with 3-stages given by Rabiei et al in [6] is 
developed for solving first order fuzzy initial value problems. 

In sections 1 and 2, some basic definitions and theorem on 
FDEs are given. In section 3, Fuzzy Improved Runge-Kutta 
method of order four with three stages (FIRK4) is proposed 
and numerical examples to illustrate the efficiency of new 
method are given in section 4. 

I. PRELIMINARIES  

Fuzzy set is a generalization of a classical set that allows 

membership function to take any value in the unit interval [0, 

1]. The formal definition of a fuzzy set is as follows:  

Definition 1: (see [1]) Let      be a universal set. A fuzzy 

set  A   in      is defined by a membership function  ( )A t   that 

maps every element in     to the unit interval [0, 1]. A fuzzy 

set  A   in      may also be presented as a set of ordered pairs 

of a generic element  t   and its membership value, as shown in 

the following equation:  

A  t,At|t  
 

 Definition 2: (see [1]) Let  A   be a fuzzy set defined in     

. The support of  A   is the crisp set of all elements in      

such that the membership function of  A   is non-zero, that is,  

}.0)(|{)(sup  tAtAp  

 Definition 3: (see [7]) Let  A   be a fuzzy set defined in      

by membership function  ( ) : [0,1]A t   . Let us denote by  

FR   the class of fuzzy subsets of the real axes (i.e.  

]1,0[: RA  ) Satisfying the following properties: 

1) )  FRA  ,  A   is normal, that is there exists  t0  R   

such that  1)( 0 tA  ;  

2) )  FRA  ,  A   is convex, that is for all  Ryt,   and  

10    , it holds that  

));(),(min())1(( yAtAytA    

3) )  FRA  ,  A   is upper semi-continuous on  R  , that 

is for any  R0t  , it holds that  )(lim)(
0

0 tAtA
tt 

   

4) )  }0)(|{][ 0  tAtclA R   is a compact, where  )(Ucl   

denotes the closure of subset U. 

Then  FR   is called the space of fuzzy members. 

Obviously  FRR  . 

Definition 4: (see [1]) Let  A   be a fuzzy set defined in  

FR  . The  r   cut of  A   is the crisp set  rA][   that contains all 

elements in  R   such that the membership values of  A   is 
greater than or equal to  r  , that is  

],1,0(},)(|{][  rrtAtA r R  

}0)(|{][ 0  tAtclA R  . 
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Definition 5: (see [7]) Let  }0{:  RRR FFD  ,  

|})()(||,)()(max{|),( 2211]10[ rvrurvruSupvuD r  

  be Hausdorff distance between fuzzy numbers, where  

ur  u1r, u2r, vr  v1r, v2r.   The 
following properties are well known:  

,,,),,(),( FR wvuvuDwvwuD  

,,,),,(||).,.( FRR  vukvuDkvkukD  

,,,,),,(),(),( FR ewvuevDwuDewvuD  

Where    D,FR  is a complete metric space. 

 Definition 6: (see [8]) A function  
FRR:f   is said to 

be fuzzy continuous function, if f  exists for any fixed 

arbitrary   R0t   and  0,0     such that  

.)](),([|| 00   tftfDtt  

Definition 7 (see [7]) Let  FRyx,  , if there exists  

z  RF   such that  zyx   , then  z   is called H-

difference of  x,y   and it is denote by  x  y  . ( Note that  

x  y  x  1y  x  y  ). 

Definition 8 (see [7]) Let  f : a,b  RF   and  

t0  a,b  . We say that  f  is H-differentiable 

(differentiability in sense of Hukuhara) at  0t  , If there exists 

an element  FR )( 0tf  , such that, 

1) for all  0h   sufficiently near to zero,      

ft0  h ft0  ,      ft0 ft0  h   and the 

limits,(in the metric D) 

h0

lim
ft0  h ft0

h


h0

lim
ft0 ft0  h

h
 f t0,

f   is called (1)-differentiable at  t0   or 

2) for all  0h   sufficiently near to zero,      

ft0  h ft0  ,      ft0 ft0  h   and the 

limits,  

        

h0
lim

ft0  h ft0
h


h0
lim

ft0 ft0  h
h

 f t0.
  

       f   is called (2)-differentiable at  t0  . 

 Theorem (see [7]) Let  f : a,b  RF   be a function 

denotes by  )),(),,(()( 21 rtfrtftf   , for each  ]1,0[r  . 

Then, 

1) if  f   is (1)-differentiable, then  ),(( 1 rtf   and  ),(2 rtf   

are differentiable functions and  

)),,(),,(()( 21 rtfrtftf    

2) if  f  is (2)-differentiable, then  ),(1 rtf   and  ),(2 rtf   are 

differentiable functions and  )),(),,(()( 12 rtfrtftf   .  

see [9] .     

II. FUZZY INITIAL VALUE PROBLEMS 

Consider the fuzzy initial value problem  

].[,)()),(,()( 000 Tttytytytfxy   

 Where f is a fuzzy function with r-level sets of initial value  

].1,0[)],;0(),;0([][ 210  rryryy r  

We have  )];(),;([),( 21 rtyrtyyty   and    

)],(),,([),( 21 ytfytfytf    where  

)].;(),;(,[),(

)],;(),;(,[),(

212

211

rtyrtytGytf

rtyrtytFytf




 

By using the extension principle, when  )(ty   is fuzzy 

number we have the membership function  

.)},,(|))(({sup)))((,( R stfstystytf   

It follows that:  

],1,0[)],;,(),;,([)],([ 21  rrytfrytfytf r   

where  

 )]},(),([|),(min{);,( 211 ryryuutfrytf   

 )]}.(),([|),(max{);,( 212 ryryuutfrytf   

Throughout this paper we also consider fuzzy function 
which is continuous in metric space  D . Then the continuity 
of  ));(,( rtytf   guarantees the existence of the definition 

of  ));(,( rtytf   for  ],[ 0 Ttt   and  ]1,0[r  . Therefore, 

the functions F and G are defined.  

III. FUZZY IMPROVED RUNGE-KUTTA METHOD OF ORDER 

FOUR WITH 3-STAGES 

Let the exact solution  )];(),;([)]([ 21 rtYrtYtY r   which is 

approximated by.  

Based on construction of Improved Runge-Kutta method by 
Rabiei  et al  [6], Fuzzy Improved Runge-Kutta method of 
order four with three stages (FIRK4) is given by:  

))}),;(,());(,({));(,());(,(();();(

))}),;(,());(,({));(,());(,(();();(

1122
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1111
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where 



 

 

11 1 2

12 1 2

21 2 11 12

22 2

( , ( ; )) min{ ( , ) | [ ( ; ), ( ; )]},

( , ( ; )) max{ ( , ) | [ ( ; ), ( ; )]},

( , ( ; )) min{ ( , ) | [ ( , ( ; )), ( , ( ; ))]},

( , ( ; )) max{ ( ,

n n n n n

n n n n n

n n n n n n n

n n n

k t y t r f t u u y t r y t r

k t y t r f t u u y t r y t r

k t y t r f t c h u u z t y t r z t y t r

k t y t r f t c h

 

 

  

  11 12

31 3 21 22

32 3 21 22

) | [ ( , ( ; )), ( , ( ; ))]},

( , ( ; )) min{ ( , ) | [ ( , ( ; )), ( , ( ; ))]},

( , ( ; )) max{ ( , ) | [ ( , ( ; )), ( , ( ; ))]},

n n n n

n n n n n n n

n n n n n n n

u u z t y t r z t y t r

k t y t r f t c h u u z t y t r z t y t r

k t y t r f t c h u u z t y t r z t y t r



  

  
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we set the coefficients of FIRK4 same as IRK4 which are 
given as follows (see [6]):  

2 3 21 31 32

31 62 31 7502 10416
, , , , ,

60 85 60 24565 24565
c c a a a      

1 1 2 3

157 23221 1800 122825
, , .

23064 23064 6727 161448
b b b b

 
     

IV.  CONVERGENCE ANALYSIS 

Here we prove the convergence of FIRK method of order 
four. By using Taylor series expansion for FIRK method of 
order  4p    with given coefficients, the truncation error  

Tn1  , for FIRK4 up to  
5h   is given by 

5

1

31
11924 ,

12240
nT h   

and  5 6

1

31
11924 ( ).

12240
nT h O h                             (1) 

Consider the exact solutions  
1 2[ ( )] [ ( ; ), ( ; )]rY t Y t r Y t r   be 

approximated by  
1 2[ ( )] [ ( ; ), ( ; )]ry t y t r y t r   and 

1 1 1( ; ) ( ; ) ( , ( ; )),n n n ny t r y t r h F t y t r            (2) 

2 1 2( ; ) ( ; ) ( , ( ; )).n n n ny t r y t r hG t y t r            (3) 

Where F and G are in region K define by 

{( , , ) | 0 , , }.K t u v t T u v        

 Based on Fuzzy Improved Runge-Kutta method of order 4 
with three stages, we define the F and G as follows: 

1 11 1 11 1 1( , ( ; )) ( , ( ; )) ( , ( ; ))n n n n n nF t Y t r b k t Y t r b k t Y t r    
3

1 1 1 1

2

{ ( , ( ; )) ( , ( ; ))},i i n n i n n

i

b k t Y t r k t Y t r  



   

1 12 1 12 1 1( , ( ; ) ( , ( ; )) ( , ( ; ))n n n n n nG t Y t r b k t Y t r b k t Y t r    

3

2 2 1 1

2

{ ( , ( ; )) ( , ( ; ))}.i i n n i n n

i

b k t Y t r k t Y t r  



   

Following lemmas are used to prove the convergence of 
FIRK4 method. 

 Lemma 1 (see [10]): Let the sequence of numbers  
0{ }N

n nW 
  

satisfy  

1| | | | , 0 1,n nW A W B n N       

 for some given positive constant A and B, then  

0

1
| | | | , 0 .

1

n
n

n

A
W A W B n N

A


   


 

 Lemma  (see [10]) Let the sequence of numbers  
0{ }N

n nW 
  

and  
0{ }N

n nV 
  satisfy  

1| | | | max{| |,| |} ,n n n nW W A W V B     

1| | | | max{| |,| |} ,n n n nV V A W V B     

 for some given positive constants A and B, and denote 

| | | |, 0 .n nUn W V n N     

 then 
0

1
,

1

n

n

A
U AU B

A


 


 where 1 2A A    and  2B B .  

 

Theorem 1:  Let F(t,u,v) and G(t,u,v) are in  4 ( )C K   and let 

the partial derivative of F and G be bounded over K, then for 
arbitrary fixed r ,  0 1r   , the approximate solution of (2) 

and (3) converge to the exact solutions  
1( ; )Y t r   and  

2 ( ; )Y t r   

uniformly in t. 

 



 

 

 Proof:  The convergence of method will be proven by  

lim
h 0

y1tn1 ;r  Y1tn1 ;r,
 

lim
h 0

y2tn1 ;r  Y2tn1 ;r.
 

  Fuzzy Improved Runge-Kutta method of order p=4 is 
given by  

1 1 1 1( ; ) ( ; ) ( , ( ; )) ,n n n n nY t r Y t r h F t Y t r T         (4)  

 
2 1 2 1( ; ) ( ; ) ( , ( ; )) .n n n n nY t r Y t r hG t Y t r T          (5) 

 where  1nT    is given truncation error in equation (1). We 

define:  

1 1 1 1 1( ; ) ( ; ),n n nW Y t r y t r      

1 2 1 2 1( ; ) ( ; ).n n nV Y t r y t r     

Note for simplification in following equations we set:   

nt t  ,  
1 1( ; )nY t r Y  ,  

2 2( ; )nY t r Y  ,  
1 1( ; )ny t r y   , and  

2 2( ; )ny t r y   . Hence, by subtracting (2) and (3) from (4) and 

(5) we have 

1 1 2 1 2 1{ ( , , ) ( , , )} ,n n nW W h F t Y Y F t y y T      

1 1 2 1 2 1{ ( , , ) ( , , )} ,n n nV V h G t Y Y G t y y T      

 Therefore  

5

1 1 2 1 2

6

31
| | | | | ( , , ) ( , , ) | 11924

12240

( ),

n nW W h F t Y Y F t y y h

O h

    



5

1 1 2 1 2

6

31
| | | | | ( , , ) ( , , ) | 11924

12240

( ).

n nV V h G t Y Y G t y y h

O h

    



 

 Four  
0[ , ]t t T   and  0L    is a bound for  the partial 

derivative of F and G we have  

5

1

6

31
| | | | 2 max(| |,| |) 11924

12240

( ),

n n n nW W h L W V h

O h

   



 

5

1

6

31
| | | | 2 max(| |,| |) 11924

12240

( ).

n n n nV V h L W V h

O h

   



 

  Using the lemma 1 for  | | | |n n nU W V    with  

0 0 0| | | | | |U W V   , we  have  

5 6

0

(1 4 ) 1 31
(1 4 ) 11924 ( ) ,

4 12240

n
n

n

Lh
U Lh U h O h

Lh

   
    

 

where  T
h

n   , therefore we have:  

4 5

0

(1 4 ) 1 31
(1 4 ) 11924 ( ) .

4 12240

T
h

n

n

Lh
U Lh U h O h

L

   
    

 

 

since  
0 0 0W V    and using relation  0 (1 )m me      we 

have 

4
4 51 31

( 11924) ( ).
4 12240

LT

n

e
U h O h

L


   

if  0h   leads  (| | | |) 0n n nU W V     therefore  | | 0nW    

and  | | 0nV    which complete the proof of Theorem 1. 

V. NUMERICAL EXAMPLE 

In this section, we solved the fuzzy initial value problems 
to show the efficiency and accuracy of the proposed methods. 
Let the exact solution be  

1 2[ ( )] [ ( ; ), ( ; )]rY t Y t r Y t r   and used to 

estimate the global error as well as to approximate the starting 

values of  
1 1 1 2 1[ ( )] [ ( ; ), ( ; )]ry t y t r y t r   at the first step. 

We define the   

( , ( ; )) | ( ; ) ( ; ) |i i i ierror t y t r y t r Y t r   

 We tested the following problems and the numerical 
results of FIRK4  is given in Tables  1- 2 and Figures 1- 2. 

Problem 1: (see [5])   

( ) ( )(1 2 ), 0,y t y t t t     

1 1
(0) [ , ], [01].

2 2

r r
y r

 
    

The exact solution is given by:    

2 21 1
(0) [ , ], [01].

2 2

t t t tr r
y e e r  

    

Problem 2: (Radioactivity decay model, see [3]).   

( ) ( ) ,y t Ay t f    

  where  
1

2

3

4

( )

( )
( ) ,

( )

( )

y t

y t
y t

y t

y t

 
 
  
 

 
 

 
1

2

3

4

( )

( )
,

( )

( )

y t

y t
y

y t

y t

 
 
 
 
 
 

  

 A= 

0 0 0.4 0.1 0

0.2 0.1 0 0 0.04 0.01

0.2 0.1 0 0 0

0 0.02 0.01 0.4 0.1 0

r

r r

r

r r

  
 

  
 
  
 

   
  

 ,   

4.9 5 995 5

0 0
, (0) .

5.1 0.1 1005 5

0 0

r r

f y
r r

    
   
    
    
   
   

 

  



 

 

The exact solutions for  1r    are given by:  

3
10

1 3

50 2950
( ; ) ( ; ) ,

3 3

t
Y t r Y t r e



     

3 3
10 100

2 4

500 29500 2500
( ; ) ( ; ) .

3 27 27

t t
Y t r Y t r e e

 

     

TABLE 1: Numerical results  at = 1= 10 for 
problem 1 

r FIRK4 FRK3 

y1 y2 y1 y2 

0 6.45 × 10
-7

 6.45 × 10
-7

 2.31 × 10
-5 

2.31 × 10
-5 

0.1 6.12× 10
-7

 6.12× 10
-7

 2.19 × 10
-5

 2.19 × 10
-5

 

0.2 5.77× 10
-7

 5.77× 10
-7

 2.07 × 10
-5

 2.07 × 10
-5

 

0.3 5.40× 10
-7

 5.40× 10
-7

 1.93 × 10
-5

 1.93 × 10
-5

 

0.4 5.00× 10
-7

 5.00× 10
-7

 1.79 × 10
-5

 1.79 × 10
-5

 

0.5 4.56× 10
-7

 4.56× 10
-7

 1.63 × 10
-5

 1.63 × 10
-5

 

0.6 4.08× 10
-7

 4.08× 10
-7

 1.46 × 10
-5

 1.46 × 10
-5

 

0.7 3.53× 10
-7

 3.53× 10
-7

 1.28 × 10
-5

 1.28 × 10
-5

 

0.8 2.88× 10
-7

 2.88× 10
-7

 1.03 × 10
-5

 1.03 × 10
-5

 

0.9 2.04× 10
-7

 2.04× 10
-7

 7.32 × 10
-6

 7.32 × 10
-6

 

1.0 0 0 0 0 

 

 

 

TABLE 2: Numerical results of 1 = 3 and 2 =  

with  = 005= 1 for Problem 2 

t FIRK4 FRK3 

y1 y2 y1 y2 

0 0.0 0.0 0.0
 

0.0
 

0.5 2.76× 10
-7

 3.06× 10
-7

 1.77 × 10
-5

 1.97 × 10
-5

 

1 4.75× 10
-7

 5.27× 10
-7

 3.06 × 10
-5

 3.40× 10
-5

 

1.5 6.13× 10
-7

 6.81× 10
-7

 3.95 × 10
-5

 4.39 × 10
-5

 

2 7.03× 10
-7

 7.81× 10
-7

 4.53 × 10
-5

 5.04 × 10
-5

 

2.5 7.57× 10
-7

 7.41× 10
-7

 4.88 × 10
-5

 5.42 × 10
-5

 

3 6.24× 10
-7

 8.68× 10
-7

 5.04 × 10
-5

 5.60 × 10
-5

 

 

 

FIGURE 1: The approximated solution of 1() and 2() 
(solid line) and exact solution (points) with = 012 
[0 1] for problem 1. 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 2: The approximated solution of 
1()2()3() and 4() (solid line) and exact solution 
(points) with = 01= 1 for problem 2. 
 
 



 

 

VI. CONCLUSION 

For tested problems 1 and 2 , the maximum global error of 
FIRK4 cpmpared with fuzzy Runge-kutta method of order 
three with 3 stages (FRK3) derived by Dormand [11]  are  
given in Tables 1 and 2. Note that FRK3 is based on original 
coefficient of classical third order three stages Runge-kutta 
method which is given in [6].  The numerical results show that 
FIRK4 with same number of stages gives high error accuracy. 
Also Figures 1 and 2 show the curve of approximated solution 
compared with the exact solution  and we can see that the 
approximated solution by FIRK4 almost tends to the exact 
solution which indicates the accuracy of method .  

In this paper we developed Fuzzy Improved Runge-Kutta 
methods for solving first order fuzzy differential equations. The 
scheme is two step in nature and is based on the Improved 
Runge-Kutta method for solving ordinary differential 
equations. The method of order four with three stages is 
proposed. Numerical results show that fuzzy Improved Runge-
Kutta methods with high error accuracy are efficient for 
solving first order fuzzy differential equations.  
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