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Abstract— In this paper a fuzzy Improved Runge-Kutta method
for solving first-order fuzzy differential equations is proposed.
The scheme is two step in nature and is based on the Improved
Runge-kutta method for solving ordinary differential equations.
Here, the fourth order method with three stages is explained. In
this method some new parameter be exploited to increase the
accuracy in comparison with other same stage existing methods.
The convergence of the method is proven, and several numerical
examples are experienced to illustrate the effectiveness of the
method.
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Introduction

Fuzzy Differential Equations (FDEs) are used for
modelling the problems in science and engineering. Most of the
problems require the solution of FDEs which satisfied fuzzy
initial conditions. The concept of fuzzy derivative was first
introduced by Chang and Zadeh [1], later Dubois and Prade [2]
proposed the extension principle for solving FDEs. It is
difficult to find the exact solution of FDEs therefore several
numerical methods were developed to address this problem.
Abbasbandy and Allahviranloo [3] developed numerical
algorithm for solving fuzzy differential equations based on
Seikkala's work [4]. Ahmad and Hasan [5] presented a new
fuzzy version of Euler's method for solving FDEs with fuzzy
initial values. In this paper the Improved Runge-kutta method
of order four with 3-stages given by Rabiei et al in [6] is
developed for solving first order fuzzy initial value problems.

In sections 1 and 2, some basic definitions and theorem on
FDEs are given. In section 3, Fuzzy Improved Runge-Kutta
method of order four with three stages (FIRK4) is proposed
and numerical examples to illustrate the efficiency of new
method are given in section 4.

l. PRELIMINARIES

Fuzzy set is a generalization of a classical set that allows
membership function to take any value in the unit interval [0,
1]. The formal definition of a fuzzy set is as follows:

Definition 1: (see [1]) Let Q@ be a universal set. A fuzzy
set A in Q isdefined by amembership function A(t) that

maps every element in @ to the unit interval [0, 1]. A fuzzy
set A in Q may also be presented as a set of ordered pairs
of a generic element t and its membership value, as shown in
the following equation:

A =A{tAD)It €

Definition 2: (see [1]) Let A be a fuzzy set defined in
. The support of A is the crisp set of all elements in Q
such that the membership function of A is non-zero, that is,

sup p(A) ={t e Q| A(t) > O}
Definition 3: (see [7]) Let A be a fuzzy set defined in Q
by membership function A(t): Q—[0,1] . Let us denote by

R, the class of fuzzy subsets of the real axes (i.e.
A : R—[0,1] ) Satisfying the following properties:

1) ) VAeR, , A isnormal, that is there exists to € R
such that A(t,)=1;

2) ) VAeR, , A isconvex thatisforall t,yeR and
0< A <1, itholds that
A(At+ (L—-A)y) = min(A(t), A(Y));
3) ) VAeR,, A isuppersemi-continuouson R , that
isforany t, € R ,itholdsthat A(t,) ZtILrP A(t)

4) ) [A° =cl{t e R| A(t) >0} is acompact, where cl(U)
denotes the closure of subset U.
Then R, is called the space of fuzzy members.

Obviously Rc R .

Definition 4: (see [1]) Let A be a fuzzy set defined in
Ry . The r cutof A s the crisp set [A]" that contains all
elements in IR such that the membership values of A is
greater than or equal to I , that is

[A]" ={teR|A(t)>r}, re(0,1],
[A]° =cl{t e R | A(t) > O} .
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Definition 5: (see [7]) Let D : R, xR, - R, U{C},
D(u,V) = Sup, 4o max{| u, (r) —v, (r) |, [u,(r)—v,(r) [}
be Hausdorff distance between fuzzy numbers, where
[ulr = [us(n), u2(N], [V]r = [va(r), v2(N]. The

following properties are well known:
D(u+w,v+w)=D(u,v), Yuyv,weR,
D(ku,kv)=k|D(u,v), VkeR, u,veRy,
D(u+v,w+e)=D(u,w)+D(v,e), Yu,v,w,eeR,
Where (]RF, D) is a complete metric space.

Definition 6: (see [8]) A function f : R - R, issaid to
be fuzzy continuous function, if f exists for any fixed
arbitrary t,eR and e>0,0>0 such that

[t—t, <o = D[f(t), f(t,)]l<e.

Definition 7 (see [7]) Let
e RF

X,y eRy , if there exists

such that X=Y+2z , then Z s called H-

difference of X,¥Y and it is denote by X © Y . ( Note that
XOYy+X+(EDy=x-y)

Definition 8 (see [7]) Let f:(@b) > Rr and
to € (@,b) . we say that f is H-differentiable
(differentiability in sense of Hukuhara) at t; , If there exists

anelement f'(t,) € R , such that,

1) forall h>0 sufficiently near to zero, 3
f(to +h) ©f(to) , 3 f(to) ©f(to —h) and the
limits,(in the metric D)

h-0* h-0* h

= f'(to),

f is called (1)-differentiable at to or
2) for all h<O sufficiently near to zero, 3

f(to +h) ©f(to) , 3 f(to) ©f(to —h) and the
limits,

fim [+ hi]e LR () egl(to -h (to).

h-0" h-0"

f is called (2)-differentiable at to .

Theorem (see [7]) Let f:(ab) -~ Rr be a function
denotes by f(t)=(f,(t,r), f,(t,r)) , for each re[0,1] .
Then,

1) it Tis (1)-differentiable, then (f,(t,r) and f,(t,r)
are differentiable functions and

f't)=(f, &), f,(tr)),
2) if f is (2)-differentiable, then f (t,r) and f,(t,r) are
differentiable functions and  f'(t) = (f, (t,r), f, (t,r)) .
see [9] .

Il.  Fuzzy INITIAL VALUE PROBLEMS
Consider the fuzzy initial value problem

y'() =t y), yt) =Yo, telt,T]
Where f is a fuzzy function with r-level sets of initial value

[Yol" =[v,(0;r),y,(O;1)], re[O, 1.

We  have yt.y) =y, (tr). y,(tr]  and
f(t,y)=[f.(t.y), f,(t,y)] where

fi(ty)=F[t, v, (1), y, (&)l

fz(t,y)ZG[t, yl(t;r)’ YZ(tvr)]

By using the extension principle, when y(t) is fuzzy

number we have the membership function

ft, y®))(s) =sup{y(t)(x)[s= f(t,0)}, seR.
It follows that:
[f Y] =[f.tyr), f,tyn] ref0,1],

where
fot, y;r) =min{f (t,u) [u e[y, (r), y,(N1},
f, (@t y;r) =max{ f (t,u) |uely,(r), y,(N]}

Throughout this paper we also consider fuzzy function
which is continuous in metric space D . Then the continuity
of f(t, y(t);r) guarantees the existence of the definition
of f(t y(t);r) for teft,, 7] and re[0,1] . Therefore,
the functions F and G are defined.

Il.  Fuzzy IMPROVED RUNGE-KUTTA METHOD OF ORDER
FOUR WITH 3-STAGES

Let the exact solution [Y(t)]" =[Y,(t;r), Y, (t;r)] which is
approximated by.

Based on construction of Improved Runge-Kutta method by
Rabiei et al [6], Fuzzy Improved Runge-Kutta method of
order four with three stages (FIRK4) is given by:

Yi(thasr) = Ya(toir) + hbky, (t, y(t,m) —bok (G, y(t.50) + Zbi{ku(tn, (H9) il S (SR (AH )} )

y2 (tn+l; r) = y2 (tn ; r) + h(blklz (tn ! y(tn ; r)) - b—lk—lz (tn—17 y(tn—l; r)) + Zbi{kiZ (tn ! y(tn ; r)) - k—i2 (tn—li y(tn—l; r))})v

where

i=2



Ky (€, y(t,:1)) =min{f (t,,u) [u ey, (t,;r), y,(t,: )1},
Ko (t, Y(t,: 1)) = max{f (t,,u) [u e[y, (t,; 1), ¥, (t,; NI}
Ko (& Y(&,:1)) = min{f (t, +C,h,u) [uelz, (&, Y1), 2, (E, Y(t,; I}
Koo (t,, Y(t,:1)) = max{f (t, +c,h,u) [uefz,(t, y(t,;r) z,(t, yt,; )}
Ka (6, y(t,i1)) = min{f (t, +c;h,u) [u ez, (L, y(t,:)), 2, (t,, y(t,; )1}
Koo (t, Y(t,: 1)) = max{f (t, + c;h,u) [u e[z, (t,, y(t,iT)). 2, (L, y (&, I},

and

le(tn ! y(tn ; r)) = yl (tn ; r) + haZlkll(tn ! y(tn ; r))’ 212 (tn ’ y(tn ; r)) = y2 (tn ; r) + ha'21k12(tn ' y(tn ; r))’

ZZl(tn’ y(tn'r)): yl(tn;r)_'_hza?j kjl(tn' y(tn’r))! ZZZ(tn’ y(tn’r)): yz(tn;r)_'_hzasj ka(tn! y(tn!r))'

we set the coefficients of FIRK4 same as IRK4 which are
given as follows (see [6]):

L .31 62 31 750 10416

750" © 85" 760" X T 24565’ 2 24565’
157 b, = 23221, -1800 b, - 122825
23064’ 23064 ° 6727 161448

IV. CONVERGENCE ANALYSIS

Here we prove the convergence of FIRK method of order
four. By using Taylor series expansion for FIRK method of
order p=4 with given coefficients, the truncation error

The1 | for FIRK4upto h° isgiven by
31
T .| < ———/11924h°,
Mo 12240

31
12240

Consider the exact solutions [Y (t)], =[Y,(t;r), Y,(t;r)] be
approximated by [y(t)], =[y,(t;r), y,(t;r)] and

Vit o0 =yt n+hFE,yt;r), @

Yo (tai 1) = Y, ;1) +hG(L, y(t,ir). @)
Where F and G are in region K define by

and T..~

J11924 h® +O(h%). @

K={(t,u,v)|0<t<T, —o<u<+00, —00<V<+oo}

Based on Fuzzy Improved Runge-Kutta method of order 4
with three stages, we define the F and G as follows:

F (tn Y (tn; r)= b1k11 (tn Y (tn; r)- b—lk—ll (tn—l’ Y (tn—l; r)
30K Y (i)~ s, Y (T,

G(tn ’Y (tn ’ r) = blklZ (tn’ Y (tn' r)) - b—lk—12 (tn—l’ Y (tn—l; r))
3
+ Dbk (b Y (i) —kp (b Y (i)
i=2
Following lemmas are used to prove the convergence of

FIRK4 method.

Lemma 1 (see [10]): Let the sequence of numbers g 3"
satisfy

|Wn+1 |S Aan |+81 0<n<N _1’

for some given positive constant A and B, then

n

W, < AW, 4B

1, 0<n<N.
1

Lemma (see [10]) Let the sequence of numbers gw 3"
and {v 3}V satisfy

| Wy [SIW, [ +Amax{|W, |,V [}+B,
\Y

n+1

IV, [+ Amax{|W, ||V, [}+B,
for some given positive constants A and B, and denote

Un=W, |+]V,], 0<n<N.

then y SAU0+|§A§__1 whereA=1+2A and B=2B.
" A-1'

Theorem 1: Let F(t,u,v) and G(t,u,v) are in C*(K) and let
the partial derivative of F and G be bounded over K, then for
arbitrary fixed r, 0<r <1, the approximate solution of (2)
and (3) converge to the exact solutions Y,(t;r) and v, (t;r)

uniformly in t.



Proof: The convergence of method will be proven by

h"ng Y1(tneas 1) = Yi(tnea; 1),

Imy (ta;r) = Yz (tnsain)-
Fuzzy Improved Runge-Kutta method of order p=4 is
given by

Yl(tn+l; r) :Yl(tn; r) + h F(t Y(tm r)) + n+1? (4)

N=Y,(t,;r)+hGE, YE:N)+T.,. 6

n+1?

Y, (t

where T_., is given truncation error in equation (1). We
define:

Wn+l = Yl (tn+1; r) - yl (tn+1; r)’
\% +1 :YZ (tn+1; r) - y2 (tn+l; r)'

Note for simplification in following equations we set:

t=t, Y@t:;n=Y,, Y,@t;n=Y,, Y (t;:;r)=y, . and
Y,(t,;r)=Yy, .Hence, by subtracting (2) and (3) from (4) and
(5) we have

W, =W, +h{F(t.Y,
Vn+1 :Vn + h{G(t!

Yo)—F (YL Y ) T,
Y1’Yz)_G(t,y11yz)}+Tn+1’

Therefore

\/1192 4 h®

[Woit [<IW, | +hI FELYLY,) = F (LY o) [+ 070

o),
[V [V, [+h G, Y,) ~G (L, ¥y, ¥,) |+ e 11924 h
12240
+o(h®).

Four te[t, T. and LC>o0 is a bound for the partial
derivative of F and G we have

\/11924 h®

|W

n+l

I<IW_ | +2h L max(|W, |,|V, |)+

+0(h®),

IV, [KIV, |+2h L max(|W. |,|V. ) +%«/11924 h®

+0(h®).
Using the lemma 1 for
U, AW, | +|V, | . we have

(L+4Lh)" - (

U, W, |+]V,|  with

31 1924 b + o ()

<@+4Lh)"U, +
( g 12240 j

4Lh

where n =% , therefore we have:

U, <@+4Lh)"U, +

@+4LChy" -1( 31 .
_ J11924 h* +O(h®
4L 12240 +omy )

since W, =V, =0 and using relation 0 <(1+ )" < e™ we
have
alT
U < e - 1
" 4L 12240

3L [e2ayht +o(he).

if h—>o0 leads U =(W,|+|V,|)—0 therefore |W |0
and |V |—>0 which complete the proof of Theorem 1.

V.  NUMERICAL EXAMPLE

In this section, we solved the fuzzy initial value problems
to show the efficiency and accuracy of the proposed methods.
Let the exact solution be [y (t)] =[Y,(t;r), Y,(t;r)] and used to

estimate the global error as well as to approximate the starting
values of [y(t)]" =[y,(t;r), y,(t;r)] atthe firststep.

We define the
error(ti’ y(ti ; r)) =| y(ti ; I’) _Y(ti ; r) |

We tested the following problems and the numerical
results of FIRK4 is given in Tables 1- 2 and Figures 1- 2.

Problem 1: (see [5])
y'(t)=yd-2t), t=0,

re[01].
The exact solution is given by:
y(0) = PV r‘“¢ e'], refo1].

Problem 2: (Radloactlwty decay model, see [3]).
y'(t)=Ay(t)+ 1,

Yy (1) AQ)
where AL t
yo=| = y= O
ya () Ys(t)
Ya () AQ)
0 0 —0.4+0.1r 0
A= | 0.2+0.1r 0 0 —0.04+0.01r
-0.2-0.1r 0 0 0
0 -0.02-0.0lr 0.4-0.1r 0
4.9+5r 995 +5r
0
= , y(0)= .
51-0.1r y©) 1005 -5r
0 0



The exact solutions for r=1 are given by:

Y, (1) =Y, (t; r)—

50 2950
elO

3

TABLE 1. Numerical results at zv= 1, /= 10 for

problem 1

r FIRK4 FRK3

Y1 Y2 Y1 Y2
0 | 645x107 | 6.45x107 | 231x10° | 2.31x 107
0.1 | 6.12x107 | 6.12x 107 | 2.19x10° | 2.19x 107
0.2 | 577x107 | 577x10" | 2.07x10° | 2.07 x 10°
0.3 | 540x107 | 5.40x10" | 1.93x10” | 1.93x 107
0.4 | 5.00x107 | 5.00x 10" | 1.79x 10> | 1.79 x 10®
05 | 456x107 | 456x10" | 1.63x10° | 1.63x 107
06 | 4.08x107 | 4.08x10" | 1.46 x10° | 1.46 x 10®
0.7 | 353x107 | 353x10" | 1.28x10° | 1.28 x 107
0.8 | 2.88x107 | 2.88x10" | 1.03x10° | 1.03x 107
09 | 2.04x107 | 2.04x10" | 7.32x10° | 7.32x 10°
1.0 0 0 0 0

TABLE 2: Numerical results of 1 = 28 and 22 = gy

with /2 = 0.05, = 1 for Problem 2

t FIRK4 FRK3

Y1 Y2 Y1 Y2

0 0.0 0.0 0.0 0.0
05 | 2.76x107 | 3.06x107 | 1.77x10° | 1.97 x 10®
1 | 475x107 | 527x 107 | 3.06 x 10 | 3.40x 10”
1.5 | 6.13x10" | 6.81x 10" | 3.95x 10 | 4.39 x 107
2 | 7.03x107 | 7.81x10" | 453 x10” | 5.04 x 107
25 | 757x107 | 7.41x107 | 488x10° | 5.42x10”
3 | 6.24x107 | 8.68x 10" | 5.04 x10™ | 5.60 x 107

V() =Y. () = 5%0 29500 s 2500 sz

27 27

FIGURE 1: The approximated solution of zi(?)
(solid line) and exact solution (points) with /2 =

[0 1] for problem 1.

and z2(2)
01, 7¢

800 U1 =Us

#00
‘.’

400 H

200 H

' i ' i

t

FIGURE 2: The approximated solution of
w(2), 22(2), 18(7) and ga(7?) (solid line) and exact solution
(points) with 42 = 0.1, =1 for problem 2.



VI. CONCLUSION

For tested problems 1 and 2 , the maximum global error of
FIRK4 cpmpared with fuzzy Runge-kutta method of order
three with 3 stages (FRK3) derived by Dormand [11] are
given in Tables 1 and 2. Note that FRK3 is based on original
coefficient of classical third order three stages Runge-kutta
method which is given in [6]. The numerical results show that
FIRK4 with same number of stages gives high error accuracy.
Also Figures 1 and 2 show the curve of approximated solution
compared with the exact solution and we can see that the
approximated solution by FIRK4 almost tends to the exact
solution which indicates the accuracy of method .

In this paper we developed Fuzzy Improved Runge-Kutta
methods for solving first order fuzzy differential equations. The
scheme is two step in nature and is based on the Improved
Runge-Kutta method for solving ordinary differential
equations. The method of order four with three stages is
proposed. Numerical results show that fuzzy Improved Runge-
Kutta methods with high error accuracy are efficient for
solving first order fuzzy differential equations.
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