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Abstract: In the paper, a quantitative model is presented to estimate the magnitudes of eustatic sea level rises and falls 
by seismic data in an effort to consider the variables such as erosion, subsidence, compaction, and paleo-water depth, 
etc. As an application of the model, a eustatic curve of sea level changes since Pliocene is deduced from high-resolution 
air gun seismic lines acquired by German Sonne 115 Cruise in 1997. On the curve, about 36 cycles of sea level changes 
can be recognized with periods ranging from 0.08 Ma to 0.29 Ma, which are fallen into 4th order of sea level cycles. 
The curve is compared with the reprocessed deep-sea stable oxygen isotope data from benthic foraminifera on ODP sites 
1,148 and 846 by resampling and filtering. Both of them matched well, which suggests that the 4th order of eustatic 
sea level changes during the last 5.33 Ma was probably controlled by changes in the sizes of the ice caps. 

INTRODUCTION 

Sunda Shelf, the largest shelf in the world, is located 
in the south of the South China Sea. Its wide and flat 
morphology made it easily submerged and exposed as a 
result of rising and falling of sea level. So it is believed to 
be one of the good sites to document Late Cenozoic sea 
level fluctuations (e.g. Sea Level Working Group, 1992). 

The study area is located on the northern Sunda Shelf, 
ranging from 2° to 6° North Latitude and from 107° to III ° 
East Longitude. In this area, about 3,000 kIn high-resolution 
air gun seismic lines were acquired during the Cruise 115 
of German Research Vessel Sonne (SO-115) in 1997 
(Stattegger et al., 1997). These data provided information 
for us to reconstruct the framework of seismic sequence 
stratigraphy and to deduce the history of sea level change 
since Pliocene. 

METHODOLOGY 

The popular method used to estimate the magnitudes 
of sea-level rises and falls by seismic data was developed 
by Vail and his Exxon's coworkers in the late 1970s (Vail 
et al., 1977). In the method, "coastal aggradation", is used 
to measure approximately the vertical increments of sea­
level changes. The magnitude of sea level changes estimated 
by this method, however, is not the value of eustatic sea 
level but the value of sea level relative to seabed or surface 
of sediment. The latter is the sum of eustatic sea level and 
subsidence of seabed or surface of sediment. In the method, 

there is an inclusive assumption that identical subsidence 
exists between different onlap or offlap points. In addition, 
measurements of coastal aggradation are influenced by a 
series of factors such as erosion of onlap and offlap points, 
compaction, and paleo-water depth, etc. How to deal with 
these factors is not elucidated in the method. In this study, 
we presented a quantitative model to estimate the 
magnitudes of eustatic sea level rises and falls by seismic 
data in an effort to take the variables mentioned above into 
consideration. 

Consider the deposition of a stratigraphic unit, i. There 
are two cases for the shift of coastal onlap points during its 
deposition. One is onlap, that is, the onlap point shifts 
landward. Another is offlap, that is, the onlap point shifts 
basinward. On both cases, we can easily get the expressions 
of eustatic increment of sea level rise or fallon the basis of 
definitions of both eustatic sea level and relative sea level: 

{ 
Wd2A + L1SA - (L1HA + L1YLA + L1Y/A) (foronlapcase) 

L1E.= 
I -WdIB - (L1Y/B + L1YrB) (forofflapcase) 

Where, L1E; and Wd are the increment of eustatic sea 
level and the paleo-water depth during the deposition of 
the unit i, respectively; L1S is the depositional thickness of 
unit i; L1H is the compaction subsidence of underlain strata 
during the deposition of unit i; L1 Y/ and L1 Yr are the loading 
subsidence and the tectonic subsidence during the deposition 
of unit i, respectively; subscripts A and B denote the original 
(depositional) position of onlap or offlap points at the 
bottom and top boundaries of unit i respectively; subscripts 
1 and 2 indicate the inception and the end time of deposition 
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Figure 1. Location of the study area and the seismic lines used (after Stattegger et aI., 1997). 

of unit i respectively. In the equation, L1S A and L1B A can be 
calculated by backstripping and decompaction algorithm; 
L1 Y LA and L1 YIB can be calculated by local or flexural isostatic 
model; L1YtA and L1YtB are estimated by regional tectonic 
subsidence model; Wd2A and WdlB are estimated by paleo­
water-depth model, which is approximated by water depth 
on the modern Sunda Shelf in this study. It is very important 
that the original position for the removed onlap or offlap 
points need to be recovered by lateral extrapolation using 
thickness in nonerosional area (Zhong et ai., in press). 

When the increments L1Ei of eustatic sea level changes 
for all the strata are calculated, eustatic sea level changes 
with time t, i.e. E(t), can be expressed as: 

n 
E(t) = LL1E. 

I 
;=1 

where i=l, 2, ... , n_n is the total number of stratigraphic 
units. 

The procedure used in charting the curve of magnitude 
of eustatic sea level rises and falls consists of three steps as 
follows: 1) selecting a typical updip seismic section crossing 
the basin margins on the basis of regional seismic sequence 
analysis, tracing the reflectors, and picking up their marginal 
onlap, offlap or truncated points, and dating the reflectors; 
2) calculating increment of eustatic sea level rise or fall 
during deposition of each layer between adjacent two 
reflectors according to the model discussed above; 3) 
compiling the sea level curve from calculation of successive 
layers in step 2, plotted in absolute time. 

RESULTS AND DISCUSSION 

The curve of eustatic sea level changes obtained in this 
study is shown on Figure 2. In the chart, the vertical 
coordinate is the linear time scale in million years before 
present. The horizontal coordinate in meters represents 
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Figure 2. Eustatic curve from this study (right) compared with 
Haq et al.'s (1987, 1988) curve (left). 

estimate of sea level rises and falls relative to the present­
day mondial mean sea level. 

According to this curve, the history of eustatic sea 
level changes during the past 5.33 Ma began with a transient 
but rapid rise in the initial stage of the Pliocene (from 5.33 
Ma B.P. to 5.1 Ma B.P.±). It was close to the peak of high 
sea level at about 5.1 Ma B.P., and lasted through the Early 
Pliocene (from 5.1 Ma B.P. to 3.7 Ma B.P. or so). From 
the Middle Pliocene (3.7 Ma B.P. or so), eustatic sea level 
began to fall. This falling trend continued to the Early 
Pleistocene [3.7-0.9 (±O.l) Ma B.P.]. Then the sea level 
fluctuated at a generally low sea level through much of the 
Late Pleistocene (from 0.9 Ma to the end of Pleistocene). 

The curve is generally in agreement with Haq et at. ' s 
(1987, 1988) curve as shown in Figure 2. Several major 
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low peaks on Haq et al.'s curve, such as those at 3.8 Ma, 
3.0 Ma, 2.4 Ma, 1.6 Ma, 0 .8 Ma, have corresponding peaks 
on our curve. Interestingly, our curve shows some peaks 
that are missing on Haq et aI.' s curve, which may indicate 
that the reso lution of our curve is higher. 

It is generally agreed that the oxygen isotope records 
recovered by analyzing foraminifera in deep-sea sediment 
cores gives a hi story of global continental ice volume and 
hence of the glacio-eustatic component of sea-level change 
(e .g. Mattews, 1984; Chappell and Shackleton, 1986; 
Shackleton, 1987). To verify our curve, we compare it 
with the deep-sea stable oxygen isotope records from benthic 
foraminifera on ODP sites 1148 (Jian et al., 2001) and 846 
(Shackleton et at. , 1995; Mix and Shackleton, 1995), which 
are located in the northern South China Sea and in the east 
Pacific respectively (Fig. 3). 

On our curve, about 36 cycles of sea level fluctuations 
can be recognized with periods ranging from 0.08 Ma to 
0.29 Ma, which are fallen into 4lh order of cycles defined 
by Vail et at. (1991) . The time resolution of deep-sea 
oxygen isotope records from benthic foraminifera, however, 
is generally sca led in millennium . In order to compare 
them on the same time scale, and to eliminate errors caused 
by casual factors during the documentation of these data, 
we reprocessed the two sets of data fo llowing the same 
procedures. Each data set is resampled with a time interval 
of 0.0 I Ma. Then the resampled data are moving-averaged 
by a filter with window width specially chosen as 0.1 Ma, 
which is equal to the upper limit of 4th order of eustatic 
cycles defined by Vail et al. (1991). This way, we can 
compare our eustatic curve with the oxygen isotope records 
on the same time scale of 41h order of cycle. To our 
sati sfaction, the results matched well (Fig. 3) . This result 

suggests that the 4th order of eustatic sea level fl uctuations 
during the last 5.33 Ma was probably controlled by changes 
in the sizes or the volumes of the ice caps. 
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