EPMA characterisation of ilmenite from *amang* of the Kinta and Klang Valleys, Peninsular Malaysia

G.H. Teh & Irdawati Hj. Lokman

Department of Geology University of Malaya 50603 Kuala Lumpur

Abstract: Samples of heavy minerals concentrates were collected from the Kinta Valley and the surrounding areas of the Klang Valley to characterise ilmenite (FeTiO₃) both physically and chemically using the EPMA (electronprobe microanalyzer).

The ilmenite grains in both valleys are not homogeneous and are associated with other heavy minerals that include monazite, xenotime, zircon, rutile, cassiterite, wolframite and topaz. Common textures of the ilmenite grains include replacement by leaching, intergrowths and exsolutions. In addition interesting exsolutions involving monazite, xenotime and ilmenorutile were observed. Generally the *amang* from the Klang Valley has more ilmenite while that from the Kinta Valley has more monazite, xenotime, zircon, rutile and wolframite.

The ilmenite from the two valleys were analysed on the EPMA to show the variations of TiO_2 and FeO from the different localities. The TiO_2 content for ilmenite, on the average, is quite similar for the Kinta and Klang Valleys, 49.7875–65.4251% to 49.0360–65.6274% respectively. The results show that the *amang* from both valleys have TiO_2 ranging from 49.4118% to 65.5263%.

INTRODUCTION

When Malaysia was the largest exporter of tin ore in the world in the last century, the processing of the associated heavy minerals or *amang*, in particular ilmenite, was also a major industry. Alot of *amang* was produced, in particular in the two main tin producing areas in Peninsular Malaysia, that is the Kinta Valley in the Ipoh area to the north and the Klang Valley in the Kuala Lumpur area to the south. Many *amang* factories mushroomed to process the *amang* from these 2 main areas.

The purpose of this paper is to characterise the ilmenite in the *amang*, physically and chemically, from these 2 areas with the aid of the EPMA (electronprobe microanalyzer).

Previous investigations on *amang* conducted include Lau (1979) in the Ipoh area and Jamlus (1979) in the Kuala Lumpur area.

MATERIALS AND METHODS

Samples of *amang* were collected from localities in the Kinta Valley and Klang Valley both from mines that were active and still operating and those inactive (Irdawati Hj. Lokman, 2001) (Fig. 1). Seven localities were sampled in the Kinta Valley, and these included Tekka Mine (TK1, TK2, Tekka), Kean Tong Mine (KT1, Kampar), SEK (M) Sdn. Bhd. (SEK1, Mambang Diawan), Cendera Harta Sdn. Bhd. (SMTD1, Mambang Diawan), Malim Nawar (TKSC1), New Lahat Mine (NLM1, Lahat) and Papan (PPN1).

The localities sampled in the Klang Valley include, Berjuntai Tin Consolidated (Btg. Berjuntai, BJT1), Marijusama Sdn. Bhd. (Bt. 16 Puchong, S1), Metreco Sdn. Bhd. (Bt. 16 Puchong, S2, S3, S5), Delima Industries (Bt. 2¹/₂, Dengkil, DISB1), Mines Shopping Fair (Serdang, MR1), Dayapi Lombong (Bt. 16 Puchong, DYP1), Kuari Tanjong Balai (Puchong, TJB1) and Taman Mas Sepang (Bt. 18 Puchong, TMS1).

The physical characteristics of the heavy minerals were studied under the binocular microscope, while intergrowths and textures were studied using polished sections under the Leitz Laborlux reflected light microscope. The EPMA (electronprobe microanalyzer) was later used to identify more precisely the heavy minerals, their intergrowths textures, inclusions and their chemical compositions (Teh, 2000).

The mineral grains were studied using the secondary electron (SE) and backscattered electron (BSE) images under the Cameca SX100 EPMA and X-ray mapping was performed to differentiate the different heavy minerals like ilmenite, cassiterite, zircon, xenotime, monazite, wolframite and others. Such X-ray maps are used in the grain count of the different heavy minerals present (Fig. 2).

On the other hand, the EDS (energy dispersive spectrometer) on the EPMA, was able to provide a scan of the REEs (rare earth elements) present, thus instrumental in differentiating monazite (Ce, La, Nd, Th)PO₄ from xenotime (YPO₄) (Fig. 3).

RESULTS AND DISCUSSION

Using the EPMA, it was easy to see that many of the ilmenite grains from *amang* are not homogenous showing Fe leaching out along fractures, cracks and cleavages and this will result in the grains showing zones, dendrites or laminations of Fe-poor and Fe-rich areas. The BSE image

will show Fe-poor areas (invariably enriched in Ti) to be grey while the Fe-rich areas are bright (Fig. 5). Similarly exsolutions of iron oxide in ilmenite were clearly discernible in BSE images (Figs. 4 and 6).

EPMA studies of the associated heavy minerals also revealed many interesting exsolutions that include:

- (i) the occurrence of exsolution bodies containing Fe, Mn, Nb, W, O (or ilmenorutile) (Fleischer, 1983) in TiO₂ (rutile) (Fig. 7).
- (ii) the exsolution bodies of monazite in xenotime (YPO₄) (Fig. 8).
- (iii) the exsolution bodies of xenotime in monazite and vice-versa in an intergrown monazite-xenotime grain (Fig. 9).
- (iv) exsolution bodies of uranium in xenotime (Fig. 10).
- (v) exsolutions of U-Th in monazite (Fig. 11).

On the abundance of heavy minerals in the *amang*, the Klang Valley generally has more ilmenite while the Kinta

Figure 1. Map showing sample localities in the Kinta and Klang valleys.

Geological Society of Malaysia Annual Geological Conference 2002

Figure 2. X-ray map of *amang* sample S3 from 16 mile Puchong used for point counting of heavy minerals present. The sample has alot of ilmenite (Fe, O, Mn), some grains of cassiterite (Sn), zircon (Zr), pyrite (Fe, S), one grain of xenotime (Y, P) and two grains of monazite (Ce, P).

Valley has relatively more monazite, xenotime, zircon, rutile and wolframite grains (Tables 1 and 2).

The results show that the ilmenite grains were more abundant in the *amang* in the Tekka area in the Kinta Valley while in the Klang Valley area the Dengkil area had more ilmenite grains in the *amang* (Fig. 12). Geochemically, the ilmenite samples from the Klang Valley show the following variation in contents of TiO_2 (Table 3), Puchong 49.6750–67.6800% TiO_2 , Batang Berjuntai 48.5309–60.2154% TiO_2 , Serdang 49.0600–68.6400% TiO_2 and Dengkil 48.8780–65.9740% TiO_2 . On the other hand the ilmenite grains from the Kinta Valley

Figure 3. EDS scan differentiating the two phosphates, monazite (green with REEs) from xenotime (red, with Y). Sample TKSC1, Malim Nawar.

Figure 4. X-ray map differentiating Fe-rich from Ti-rich areas of ilmenite grain. Sample S1, 16 mile Puchong.

Geological Society of Malaysia Annual Geological Conference 2002

(Table 4) show the following TiO₂ contents: Tekka 49.9000–68.9310% TiO₂, Lahat 57.0011–63.2200% TiO₂, Mambang Diawan 48.6670–68.6440% TiO₂, Papan 46.3790–59.0220% TiO₂, Malim Nawar 47.2380–63.4370% TiO₂ and Kampar 49.5400–69.2970% TiO₂.

The TiO2 content for ilmenite, on the average, is quite

similar for the Kinta and Klang Valleys, 49.7875-65.4251% to 49.0360-65.6274% respectively. The results show that the *amang* from both valleys have TiO₂ ranging from 49.4118% to 65.5263%. For the Kinta Valley, the lowest TiO₂ content for *amang* was found at Papan (46.3790%), the highest at Kampar (69.2970%). For the Klang Valley,

Figure 5. BSE image of ilmenite grains showing Ti-poor areas (darker grey) along fractures and cleavages.

Figure 6. BSE image of ilmenite grain showing Fe oxide exsolutions (white). The other light grey grains are cassiterite. Sample S2, 16 mile Puchong.

Sample	Ilmenite	Monazite	Tourmaline	Zircon	Xenotime	Topaz	Rutile	Wolframite	Pyrite
TKSC1	.60	1	15	2	1	13	11	3	30
TK1	160	6	26	80	3	19	21	1	50
TK2	92	2	7	10	0	14	1	0	35
KT1	32	20	7	2	2	0	32	150	15
NLM1	31	0	23	0	0	5	31	0	12
SMTD1	42	5	7	3	4	5	42	200	23
SEK1	77	4	68	21	0	0	17	0	10
PPN1	85	13	68	101	3	14	98	85	1
Total:	479	51	221	217	13	70	243	439	176

Table 1. Number of grains of individual heavy minerals from sample locations in the Kinta Valley.

Table 2. Number of grains of individual heavy minerals from sample locations in the Klang Valley.

Sample	Ilmenite	Monazite	Tourmaline	Zircon	Xenotime	Topaz	Rutile	Wolframite	Pyrite
S1	93	0	62	0	0	4	2	0	0
S2	72	0	11	0	0	2	4	0	2
S3	24	2	7	16	1	5	9	0	6
S5	24	3	25	6	1	24	18	0	4
TMS1	82	1	40	2	1	29	30	0	0
DYP1	66	1	65	5	1	19	66	1	1
TJB1	127	6	58	43	4	4	0	1	10
MR1	10	3	35	8	1	26	0	6	10
DISB1	137	1	11	8	1	11	0	6	20
BJT1	100	3	4	9	1	7	. 8	8	13
Total:	735	26	318	97	11	131	137	24	66

May 26-27 2002, Kota Bharu, Kelantan, Malaysia

the lowest TiO2 content was found at Batang Berjuntai (48.5309%) and the highest at Puchong (67.6800%).

CONCLUSION

The study has shown that the *amang* from the Kinta and Klang Valleys contain varying amounts of ilmenite as well as heavy minerals like monazite, xenotime, zircon, rutile and wolframite.

EPMA studies revealed interesting textures among the heavy minerals including the radioactive nature of monazite and xenotime.

It is hoped that this knowledge of the ilmenite composition from different *amang* sources will be useful to researchers, purchasers and miners of heavy minerals in the country.

Figure 7. X-ray map showing ilmenorutile exsolutions (with high Fe, Nb, W, Mn and O) in rutile (TiO2). Sample NLM, New Lahat Mine.

Geological Society of Malaysia Annual Geological Conference 2002

Figure 8. X-ray map showing monazite exsolution bodies in xenotime (YPO,). Sample S5, Puchong.

Figure 9. X-ray map showing intergrown monazite-xenotime grain showing exsolutions of one mineral in the other and vice-versa. Sample TK2, Tekka.

87

TJB1 **S1** S2 **S**3 Fe-rich Ti-rich Okside Ti-rich Fe-rich Ti-rich Fe-rich Ti-rich Fe-rich Point 15 Point 17 Point 16 Point 20 Point 21 Point 26 Point 32 Point 27 Point 30 Point 7 Point 8 Point 3 Point 6 Point 19 Point 23 Point 24 Point 25 TiO, FeO 61.5014 61.0244 67.6800 52.6880 52.5620 49.6735 50.2307 59.1110 52.7240 66.4350 67.0890 65.8740 51.6500 53.5860 63.6050 63.5990 52.4930 22.5018 23.3007 29.1220 21.3790 41.5530 41.7800 22.4800 21.2720 20.1200 42.8840 41.9730 27.7211 23.7450 42.0511 41.5420 43.1202 42.2493 Al₂O₃ SiO, 0.3174 0.3552 0.0000 0.0500 0.0000 0.0000 0.3210 0.0000 0.1950 0.0000 0.0000 0.0870 0.0470 0.0000 0.0000 0.0000 0.0000 0.0000 0.0535 0.1348 0.0020 0.0790 0.0000 0.0090 0.0500 0.0400 0.0610 0.0000 0.0000 0.0180 0.0030 0.0020 0.0000 0.0000 Cr₂O SnO 0.0015 0.0117 0.0350 0.0000 0.0350 0.0000 0.0000 0.0132 0.0365 0.0220 0.0010 0.0270 0.0000 0.0100 0.0120 0.1080 0.0470 0.0000 0.0000 0.0000 0.0170 0.0000 0.0000 0.0000 0.0180 0.0400 0.0000 0.0220 0.0000 0.0000 0.0000 0.0000 0.0140 0.0000 Nb₂O₂ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ZrO, P₂O, PbO 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0000 0.0000 0.0000 0.0000 0.0250 0.0000 0.0000 0.0000 0.0070 0.0370 0.0110 0.0000 0.0000 0.0000 0.0435 0.0664 0.0070 0.1000 0.0000 0.0000 0.0920 0.0950 0.0000 0.0000 0.0000 0.0000 0.0000 0.1160 0.1465 0.0894 0.0000 0.0030 0.0000 0.0000 0.1240 0.2330 0.2240 0.0000 0.0000 0.0000 0.0460 0.0000 0.0000 0.0000 0.0000 As₂O₃ ThO₂ 0.0180 0.0310 0.0670 0.0690 0.0110 0.0650 0.0360 0.0110 0.0000 1.7900 0.0000 0.0050 0.0660 0.0066 0.0673 0.0330 0.0740 1.8241 2.9870 1.0640 4.4367 3.5662 1.9470 1.5510 1.1780 2.0050 0.6630 1.9060 1.7130 0.0000 1.1800 0.0000 0.0000 0.2360 WO, 0.0000 0.1539 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 87.2037 Total: 90.2590 90.8670 95.4860 96.6140 90.2440 88.3630 88.3630 94.5770 96.8330 91.6010 89.3340 94.7830 95.1910 94.6970 96.9597 89.1519

Table 3. EPIVIA analysis of limenite grains from different localities in the Klang valley (wt%	fable 3	3. EPMA analys	is of ilmenite	grains from	different lo	ocalities in t	he Klang	Valley (wt%
---	---------	----------------	----------------	-------------	--------------	----------------	----------	-------------

		5	S5				TMS1			DYP1				
Okside	Ti-r	ich 📃	Fe-	rich		Ti-rich		Fe	-rich		Ti-rich		Fe-	rich
	Point 37	Point 39	Point 34	Point 38	Point 2	Point 3	Point 5	Point 7	Point 6	Point 15	Point 17	Point 19	Point 16	Point 18
TIO, FeO ALO, SIO, Cr,O, SIO, Nb,O, ZrO, PLO, PLO AS,O, THO AS,O, THO	53.1090 34.4700 0.0000 0.0000 0.0050 0.0430 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 0.0320 0.0320	53.6410 39.7690 0.0000 0.0400 0.0180 0.0390 0.0000 0.0240 0.0000 0.0240 0.0000 0.0200 0.0000 0.0000	50.4570 43.0780 0.0000 0.0250 0.0230 0.0000 0.0010 0.0220 0.0000 0.0220 0.0000 0.0610	51.3590 42.1120 0.0000 0.0110 0.0110 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	61.5030 23.3010 0.3170 0.0540 0.0010 0.0000 0.0000 0.0000 0.0440 0.1470 0.0670 2.5560	59.4650 23.8270 0.2050 0.0200 0.0060 0.0330 0.0000 0.0000 0.0100 0.2820 0.0030	61.0260 22.5020 0.3550 0.1350 0.0120 0.0000 0.0000 0.0000 0.0000 0.0660 0.0900	50.2320 42.2500 0.0000 0.0360 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	49.6750 43.1210 0.0000 0.0140 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	57.6630 28.4920 0.1330 0.0280 0.0300 0.0400 0.0000 0.0000 0.0280 0.0060 0.0030 5.2100	61.4370 23.3850 0.2180 0.0580 0.0640 0.0210 0.0000 0.0640 0.0920 0.0410 2.8740	56.0040 29.9280 0.0000 0.0230 0.0230 0.0000 0.0000 0.0000 0.0130 0.0610	49.3560 42.4200 0.0000 0.0000 0.0200 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	48.8370 41.3620 0.0000 0.0170 0.0470 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
WO ₃	0.0000	0.0000	0.0000	0.0000	0.1540	0.0000	2.9870	0.0000	0.0000	0.0240	0.0510	4.8700	0.0000	0.0000
Total:	90.9570	98.6400	95.2860	97.1510	89.1550	85.8080	87.2060	96.9610	94.7000	91.6570	89.3060	90.7250	93.8190	92.7250

		MF	1		DISB1					BJTI				
Okside	Ti-rich Fe-rich			rich		Ti-rich		Fe-rich	Fe-rich Ti-rich				Fe-rich	
	Point 38	Point 43	Point 37	Point 42	Point 8	Point 9	Point 12	Point 6	Point 23	Point 24	Point 27	Point 25	Point 26	
TiO,	63.0940	68.6400	51.6940	49.0600	65.9740	58.8530	58.8700	48.8780	60.2154	59.3063	56.8327	48.5309	49.1031	
FeO	17.5550	14.0590	32.8780	36.4190	20.4330	26.3330	25.7590	44.1400	24.4199	25.4761	28.5483	42.3070	41.7707	
Al ₂ O,	0.4170	0.6370	0.0000	0.0000	0.4560	0.1300	0.0950	0.0000	0.2475	0.1644	0.0000	0.0000	0.0000	
SiÒ,	0.0110	0.1720	0.0000	0.0100	0.0890	0.0630	0.0100	0.0000	0.0834	0.1005	0.0278	0.0000	0.0128	
Cr,Ó,	0.0030	0.0490	0.0000	0.0340	0.0000	0.0000	0.0240	0.0250	0.0307	0.0000	0.0088	0.0044	0.0000	
SnO	0.0050	0.0430	0.0260	0.0110	0.0000	0.0160	0.0000	0.0000	0.0635	0.0340	0.0000	0.0965	0.0000	
Nb ₂ O,	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
ZrÓ, Č	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0014	0.0000	0.0000	0.0000	
P,O,	0.1110	0.0400	0.0000	0.0000	0.1230	0.0330	0.0540	0.0000	0.0619	0.0344	0.0000	0.0000	0.0000	
PbO	0.0400	0.2450	0.0000	0.0000	0.1430	0.0290	0.0180	0.0060	0.0000	0.0377	0.0000	0.0000	0.0420	
As ₂ O ₂	0.3010	0.1550	0.0500	0.0200	0.0470	0.0340	0.0240	0.1600	0.0383	0.0053	0.0832	0.0898	0.0568	
ThÔ	4.8000	18.5810	2.6500	2.2500	1.9130	5.4120	3.2440	3.3880	3.3375	2.5660	1.5089	1.9139	2.3008	
WO ₃ ⁴	0.0390	0.2760	0.0000	0.0710	0.0000	0.0000	0.2170	0.0000	0.1589	0.0782	0.0000	0.0000	0.0542	
Total:	86.0580	102.8980	87.2990	87.8750	89.1790	90.9020	88.3150	96.4530	88.6571	87.8043	87.0095	93.0662	93.3404	

Table 4. EPMA analysis of ilmenite grains from different localities in the Kinta Valley (wt%).

			TK1					TK2			NLM1		
Okside		Ti	rich		Fe-rich		Ti-	Fe-rich	Ti-rich		Fe-rich		
	Point 48	Point 50	Point 51	Point 53	Point 49	Point 54	Point 55	Point 56	Point 57	Point 59	Point 46	Point 47	Point 45
TiO, FeO Al,O, SiO, Cr,O, SnO Nb,O, ZrO, PbO As,O, ThO, ThO, ThO,	56.9530 27.8100 0.0000 0.0220 0.1110 0.0000 0.0000 0.0000 0.0070 0.0000 0.0710 3.3480 0.0000	60.5220 24.3750 0.2970 0.0040 0.0000 0.0780 0.0000 0.0740 0.0000 0.0740 0.0000 0.0410 3.9820	56.1610 26.3630 0.0000 0.0370 0.0000 0.1740 0.0000 0.0000 0.0000 0.0000 0.0420 3.7460	58.7850 26.2790 0.0000 0.0160 0.0310 0.0000 0.0000 0.0000 0.0240 0.0000 0.0280 4.2420 0.0000	49.9000 39.9950 0.0000 0.0000 0.0090 0.0150 0.0000 0.0000 0.0000 0.0000 0.0410 3.9820	68.9310 15.0350 0.4190 0.0730 0.0290 0.0700 0.0000 0.0050 0.1540 0.0850 0.0000 8.0570 0.0000	60.7180 24.7710 0.0000 0.0540 0.0000 0.0000 0.0000 0.0000 0.0400 0.0400 0.0490 4.0270	63.9140 19.2020 0.1920 0.0560 0.0090 0.0620 0.0000 0.0000 0.0640 0.0000 0.0000 4.0950	65.1180 18.9100 0.2960 0.0590 0.0180 0.0000 0.0000 0.1140 0.1500 0.0290 5.0330	49.9180 41.5100 0.0000 0.0060 0.0440 0.0000 0.0050 0.0000 0.0000 0.0120 3.3530 0.0000	62.4500 23.1070 0.0610 0.0090 0.0110 0.0280 0.0000 0.0140 0.0000 0.2790 2.4900	63.2200 20.2800 0.1510 0.0020 0.0100 0.0700 0.0000 0.0000 0.0320 0.0410 0.3500 2.6790	57.0011 31.3579 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1350 1.3310 0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total:	88.3220	89.3740	86.5230	89.4040	89.3740	92.8600	89.6650	86.8750	89.7460	94.7870	88.5000	86.8350	89.8340

				SMTD1					SEK1			Р	PN1	
Okside	Ti-rich			Fe-	rich			Ti-	rich	Fe-rich	Ti-rich		Fe-rich	
	Point 3	Point 1	Point 2	Point 4	Point 5	Point 6	Point 7	Point 50	Point 52	Point 51	Point 28	Point 32	Point 35	Point 24
TiO, FeO ALO, Cr,O, SIO, Cr,O, SNO, PLO, PLO, PLO, PLO, PLO, ALO, PLO, PLO, PLO, PLO, PLO, PLO, PLO,	68.6440 11.8090 0.2540 0.1830 0.0000 0.0000 0.0000 0.0000 0.0000 0.0440 0.4890 0.3700 7.3440	50.5110 40.3390 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	50.1630 41.4340 0.0000 0.0010 0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	49.8170 42.2250 0.0000 0.0000 0.0000 0.0350 0.0000 0.0000 0.0000 0.0000 0.0000 0.0370	50.3710 39.9490 0.0000 0.0000 0.0210 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	50.9010 39.9900 0.0000 0.0000 0.0030 0.0210 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0620	50.3420 41.8380 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	57.0830 28.3100 0.1730 0.0020 0.0030 0.0030 0.0000 0.0000 0.0010 0.0310 0.0050 4.1520	60.3920 24.5080 0.4500 0.0350 0.0210 0.0520 0.0000 0.0000 0.0170 0.0410 0.0000	48.6670 42.4270 0.0000 0.0000 0.0080 0.0590 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	46.3790 26.7480 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	59.0220 25.2750 0.2170 0.0920 0.0470 0.0240 0.0000 0.0270 0.1510 0.0320 1.9020	57.0610 28.4390 0.1160 0.0670 0.0310 0.0140 0.0000 0.0070 0.0000 0.2030 0.0330	50.2040 40.3920 0.0000 0.0000 0.0160 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
WO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0280	0.0400	0.0000	0.0600	0.0000	0.0470	0.0000
Total:	89.1870	93.7580	94.6790	93.8040	93.4890	93.4890	95.4730	89.8770	86.0660	94.8540	74.4280	86.6990	87.6530	93.6180

		TKSC1 KT1										
Okside		Ti-rich		Fe-	rich	Ti-	rich	Fe-rich				
	Point 49	Point 46	Point 45	Point 47	Point 48	Point 11	Point 12	Point 8	Point 9	Point 10	Point 13	
TiO,	63.0470	63.4370	63.1240	47.2380	48.6070	67.8870	69.2970	49.5460	49.6080	49.9450	49.5400	
FeÓ	17.8620	16.7830	17.2430	43.8920	40.7190	14.5350	14.1030	41.2230	41.3280	41.6150	41.2660	
Al _a O _a	0.7960	0.5100	0.7280	0.0000	0.0000	0.5260	0.5870	0.0000	0.0000	0.0000	0.0000	
SiO	0.0800	0.1260	0.1150	0.0000	0.0000	0.2290	0.1870	0.0000	0.0000	0.0000	0.0000	
Cr_Ó	0.0000	0.0190	0.0370	0.0040	0.0100	0.0060	0.0190	0.0140	0.0000	0.0060	0.0000	
SnO	0.0100	0.0000	0.0310	0.0230	0.0000	0.0340	0.0050	0.0000	0.0000	0.0080	0.0000	
Nb ₂ O ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
ZrÓ, °	0.0000	0.0000	0.0000	0.0280	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
P_O	0.0850	0.0950	0.0730	0.0000	0.0000	0.0000	0.0460	0.0000	0.0000	0.0000	0.0000	
PbO	0.2290	0.0350	0.2560	0.0000	0.0000	0.0460	0.4150	0.0000	0.0000	0.0000	0.0000	
As ₂ O ₂	0.0440	0.0010	0.0290	0.0260	0.0200	0.3670	0.3640	0.0210	0.0490	0.0200	0.0330	
ThÔ,	3.4810	4.6310	2.5820	2.1970	3.6760	11.5870	10.0130	2.1250	3.4220	4.1270	3.7380	
WO ₃ *	0.1380	0.0000	0.0000	0.0710	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Total:	85.7710	85.6370	84.2190	93.4780	93.0330	95.0360	95.0360	92.9300	94.4070	95.6240	94.5770	

EPMA CHARACTERISATION OF ILMENITE FROM AMANG OF THE KINTA AND KLANG VALLEYS, P. MALAYSIA

Figure 10. BSE image of xenotime with exsolutions of uranium (white) as confirmed by EDS scan (above, red). Sample TKSC1, Malim Nawar, Perak.

Figure 11. BSE image of U-Th exsolutions (white) in monazite. EDS scan confirmed the presence of U-Th (red). Sample S5, 16 mile Puchong.

Figure 12. A shows the abundance of ilmenite from different localities in the Kinta Valley, while B is for the Klang Valley. C compares the abundances of different heavy minerals from the two valleys.

ACKNOWLEDGEMENT

Financial assistance from the University of Malaya for the research is appreciated.

REFERENCES

- FLEISCHER, M., 1983. Glossary of Mineral Species. Mineralogical Record Inc., Tucson, U.S.A., 202p.
- IRDAWATIHJ. LOKMAN, 2001. Kajian EPMA dan Petrografi mineralmineral amang dengan penekanan kepada pencirian am ilmenit bagi kawasan Lembah Kinta dan kawasan sekitar Lembah Klang. Unpublished BSc. Thesis, University of Malaya, Kuala Lumpur, 34p.
- JAMLUS MD. YASIN, 1979. Mineral and Chemistry of 'Amang' in Kuala Lumpur Area. Unpublished BSc. Thesis, University of Malaya, Kuala Lumpur, 47p.
- LAU CHING TIUNG, 1979. Some aspects of the Mineralogy and Chemistry of Amang Minerals From Tin Mimes of Ipoh Region. Unpublished BSc. Thesis, University of Malaya, Kuala Lumpur, 70p.
- TEH, G.H., 2000. Recent EPMA applications in Geology and Industry. Proceedings Annual Gelogical Conference 2000, 8– 9 Sept. 2000, Penang, 369–374.

Geological Society of Malaysia Annual Geological Conference 2002