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Abstract: The depositional and diagenetic histories of upper Miocene reservoir sandstones in the Jerneh 
field, Malay Basin, were interpreted from core and log data. The sandstones, at depths of between 1,250 
and 2,000 m, were deposited during a middle to late Miocene regressive episode. Sandbodies characterize 
different facies associations: distributary mouthbar and shoreface sandbodies in the delta front, and 
channel point bar deposits in the delta plain facies association. Laterally continuous sheet sandstones 
characterize the shallow marine facies association which was deposited during transgression over the 
delta. 

With increasing depth, the reservoir sandstones show a higher degree of compaction and quartz 
cementation, which resulted in reduced porosities ranging between 10% and 25%. An estimated 15% to 
50% of the original depositional porosity was lost by compaction during shallow burial « 1 km). Quartz 
overgrowths (1-7%) are interpreted to have started forming at depths of about 1,200 m, K-feldspar was 
selectively dissolved by acidic formation waters, while plagioclase remained relatively stable. The effect 
of dissolution, however, is thought to be insignificant in terms of porosity enhancement. 

INTRODUCTION 

This paper gives an interpretation of the 
depositional and diagenetic histories of the reservoir 
sandstones in the Jerneh field, offshore Peninsular 
Malaysia. The field is located in the centre of the 
Malay Basin (Fig. 1), and is now being developed 
by Esso Production Malaysia Inc. (EPMI). 

The reservoir intervals in the field belong to 
seismic groups D and E (Fig. 2), which are important 
hydrocarbon producers in the central and northern 
Malay Basin. The sediments have been interpreted 
as lower coastal plain to tidal in origin, but no 
detailed description was given (e.g. Thambydurai 
et al., 1988). Petrographic and diagenetic studies 
on this important group of reservoirs are also 
lacking. This paper discusses on these two aspects 
of the reservoir sandstones. 

GEOLOGICAL SETTING 

The Malay Basin is an elongated (NW-SE) 
intracratonic basin filled with Oligocene to Recent, 
mainly siliciclastic, sediments. The sedimentation 
history comprises three main phases: transgression 
(Oligocene-middle Miocene) - regression (middle 
Miocene-late Miocene) - transgression (Pliocene to 
Recent). In the southern part of the basin, tectonic 
deformation has caused inversion of the basin 
during middle to late Miocene and resulted in a 
regional base-Pliocene unconformity. 
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The late Miocene deformation produced 
numerous compressional anticlines which form the 
major hydrocarbon traps in the basin. The Jerneh 
field is one such structure: an east-west trending 
anticline, cut by a north-south fault at its western 
end (Fig. 3). 

During the Miocene, the Malay Basin was a 
narrow gulf-like basin partially connected to the 
open ocean at its southeastern end. Studies by Nik 
Ramli (1988) have shown that late Oligocene to 
early Miocene sedimentation in the area was 
dominated by fan-deltas and deltas flanking the 
gulf. Paleocurrent analysis from dipmeter data 
suggest that the upper Miocene sequence in the 
Jerneh field was deposited in a southward-flowing 
alluvial-deltaic system along the axis of the basin. 
Analogy is drawn from the modern-day Lower 
Central Plains of Thailand, where there is a broad 
alluvial delta plain with rivers flowing southward 
and transverse alluvial fans at its margins (Fig. 4). 

STRATIGRAPHY AND 
PALEOENVIRONMENTS 

The strata penetrated in the Jerneh field are 
herein subdivided into three informal 
lithostratigraphic units: Jerneh, Bintang, and 
Pilong, in younging order (Fig. 2). The Jerneh and 
Bintang formations correspond approximately to 
EPMfs seismic units E and D, respectively, whereas 
the overlying Pilong formation (cf. Armitage and 
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Figure 1. Location map of Jerneh field. 
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Figure 2. Stratigraphy ofthe reservoir intervals in J erneh-3. formation names are informal, based on lithostratigraphic 
analysis of several wells. 

Viotti, 1977) corresponds to units A and B. 
Microfossil assemblages (unpublished data) suggest 
an upper Miocene age for Jerneh and Bintang 
formations, and Pliocene to Recent for Pilong 
formation. 

Reservoir sandstones studied in this paper occur 
in the Jerneh and Bintang formations, at depths 
between 1,250 and 2,000 m. 

Jerneh formation 
J erneh formation consists of fine-grained 

sandstone, mudstone, and coal. Its lower part is 
characterized by funnel-shaped SP log motifs (20-
100 m thick), representing coarsening-upward units 
of mudstone, siltstone, and fine-grained sandstone 
(Fig. 5). Coal beds occur at the top of some 
coarsening-upward units. Foraminifers are rare, 
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Figure 3. Simplified structural map of Jerneh field at E-50 sand level. From 
Thambydurai et al. (1988). 
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but palynomorphs, mainly freshwater type, are 
abundant. 

The upper Jemeh has abundant coal beds, and 
commonly shows bell-shaped or blocky SP-log motifs 
about 20 m thick, representing fining-upward 
sandstone units. Samples of the interbedded shales 
yielded few nonmarine palynomorphs, but no 
foraminifers. 

The occurrence of coal, sparse marine fauna, 
and the dominance of freshwater palynomorphs 
suggest that the Jemeh formation was deposited in 
a slightly marine-influenced coastal plain 
environment. The upward-coarsening units 
represent progradational sedimentation, probably 
in a deltaic setting. Fining-upward sandstone units 
in the upper part are interpreted as channel 
sandbodies. 

Bintang formation 
The Bintang formation consists of greenish grey 

glauconitic sandstones intercalated with laminated 
siltstones and shales. Glauconitic minerals occur 
mainly as sand-size structureless peloids and as 
thin coatings on detrital grains. 

The lower part of Bintang formation consists of 
fine-grained glauconitic sandstone (15-30 m thick) 
interbedded with thinner mudstone (Fig. 5). Most 
of the sandstones show blocky or slightly funnel­
shaped log motifs. The upper Bintang is mainly 
siltstone and shale. 

Foraminifers, up to 30 specimens per. sample, 
are dominated by Ammonia and fewer 
Ammobaculites exiguus. Pollen grains are 
dominated by the mangrove Rhizophora, which 
decreases upward. 

The presence of gla~conite, foraminifers, and 
mangrove pollen suggests deposition in a shallow 
marine environment. The sandstones are 
interpreted as shallow marine sand bars and tidal 
channel deposits. The lower abundance and 
diversity of foraminifers in the Bintang compared 
to the overlying Pilong formation indicates a 
brackish or restricted marine environment. The 
mudstones in the Bintang formation are interpreted 
as offshore marine muds. 

FACIES ASSOCIATIONS AND 
SANDBODY TYPES 

Detailed facies analysis using cores and well 
logs from three wells has enabled the recognition of 
sandbodies in three facies associations: the delta 
front and delta plain facies associations in the 
J emeh formation, and the shallow marine facies 
association in the Bintang formation. These facies 
associations are described below. 

Delta front facies association 
This facies association consists of a coarsening­

upward sequence of shale and siltstone at the base, 
becoming more sandy upward (Fig. 6). The 
coarsening-upward sequences exhibit funnel-shaped 
log character, and consists of lenticular mudstone 
overlain by wavy to flaser-bedded sandstone or 
parallel laminated sandstone. The lenticular 
mudstone contains some foraminifers. Coal bed 
occur above some of the sequences. 

The lower part of Jemeh formation consists of 
stacked coarsening-upward sequences, each 
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Figure 5. Lithostratigraphic correlation of the Jemeh 
wells, showing the major coarsening and fining upward 
sequences and the reservoir units studied petrographically. 
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measuring 15-20 m and extending across the entire 
field (Fig. 7). The sandstones have varying 
thicknesses. 

Interpretation: 
A coarsening-upward sequence indicates 

deposition in a prograding shoreline. The occurrence 
of foraminifers in the lower siltstone suggests that 
it was a marine shoreline; the siltstone representing 
prodelta to distal bar sediments deposited in a 
delta front environment. Bioturbation indicates a 
low-energy environment below wave base. The 
graded siltstone layers were probably deposited by 
density currents on the delta slope (Elliott, 1986). 
Slump structures indicate unstable delta slope 
conditions. 

The parallel laminated sandstone facies (Fig. 
6) is interpreted as a distributary mouth bar deposit 
formed of wave-reworked sand. Overlying the 
mouthbar-shoreface deposit is the heterolithic 
sandstone-mudstone facies which represents low 
energy deposits formed in the interdistributary 
areas. 

Delta plain facies association 
This facies association is typical of the upper 

Jerneh. Its consists essentially of several 
coarsening-upward and fining-upward units. The 
coarsening-upward unit consists of coal, overlain 
by rhythmite mudstone, which grades upward into 
lenticular, wavy, and flaser bedded heterolithic 
sandstone-mudstone facies (Fig. 8). The fining­
upward unit consists of sharp-based, cross­
laminated, flaser bedded sandstone which grades 
upward into lenticular mudstone, rootlet mudstone, 
and coal at the top (Fig. 9). 

Interpretation 
This facies association is interpreted to have 

been deposited on a delta plain because of the 
abundance of coal, the lack of marine fossils, and 
the dominance of freshwater or inland-plant derived 
pollen. 

The coarsening-upward units were deposited 
by small lacustrine deltas or crevasse splays which 
prograded into subsiding peat swamps. Most coal 
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Figure 8. Core log of coarsening-upward sequences in the delta plain facies association (Jemeh-
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into heterolithic sandstone-mudstone facies representing crevasse splays and associated channels. 

beds can be correlated across the field by wireline 
logs, and extend for more than 10 km. (Fig. 10). 
They were probably' deposited in swamps as a result 
of delta-lobe abandonment (Elliott, 1986). 

The fining-upward sandstone units are 
interpreted as distributary channel point-bar 
deposits, based on their sharp basal contacts and 
fining-upward log character. The overlying rootlet 
mudstone and coal are interpreted as levees and 
overbank deposits, respectively. 

Shallow marine facies association 
This facies association typifies the Bintang 

formation. It consists of 5 to 50 m thick sandstones 
alternating with shale and siltstone (Fig. 11). Most 
of the sandbodies appear to be continuous laterally, 
while some occur over short distances. Glauconitic, 
£laser-bedded sandstones show slightly funnel­
shaped log motifs, indicating upward-coarsening 
trends, whereas the cross-laminated sandstone 
shows blocky log responses, and appear to pinch 
out laterally (Fig. 5). Foraminifers are quite 
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common in the siltstone and shale facies of the 
Bintang formation. 

Interpretation: 
This facies association is interpreted as shallow 

marine deposits because of the presence of 
glauconite and foraminifers in the intervening 
mudrocks. The glauconitic sandstone bodies are 
interpreted as offshore sand bars encased in shelf 
mudstones, analogous to those in the Duffy 
Mountain sandstone (Mancos Shale) of NW 
Colorado, described by Boyles and Scott (1982). 
The erosional base and lenticular nature of some 
sandbodies suggest that some may be subtidal 
channel deposits (Fig. 11). 

DEPOSITIONAL HISTORY 

The facies associations are interpreted to 
represent three phases of deltaic sedimentation 
(Fig. 12) in response to the interplay between rate of 
sedimentation and rate of subsidence (Curtis, 1970): 
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I. Progradational phase 

This phase resulted in the deposition of upward­
coarsening delta front facies associations in the 
lower Jerneh formation. "Cyclic" repetition of the 
upward-coarsening sequences (15-20 m thick) was 
probably produced by switching of delta-lobes rather 
than relative sea-level changes. Each upward­
coarsening cycle represents progradation of a delta 
lobe, and is overlain by the next progradational 
cycle as the lobe was abandoned and inundated by 
the sea. The sharp tops of coarsening-upward cycles 
are "marine flooding surfaces" which can be 
correlated across the entire field. 

II. Aggradational phase 
This depositional phase is represented by the 

upper Jerneh, which consists of coarsening- and 
fining-upward units of the delta plain facies 
association. During this phase, the rate of 
subsidence kept pace with the rate sedimentation, 
so that sea level was relatively stable. Sediment 
accumulation was primarily by vertical aggradation. 

III. Transgressive phase 
This phase is represented by the shallow marine 

facies association of the Bintang formation. It is 
interpreted to have occurred during a relative rise 
in sea level and transgression over the delta. The 
change from a sand-dominated to a mud-dominated 
sequence reflects the transgressive nature of this 
phase. 

PETROGRAPHY AND DIAGENESIS 

Materials and methods 
For diagenetic studies, core samples from four 

reservoir sandstones (D-32, D-60, E-50, and E-90) 
between 1,270 and 1,940 m depth in the Jerneh-3 
well were studied. Well data indicate that the 
geothermal gradient in the Jerneh area is close to 
6°C/100 m, which means that the sandstones are at 
temperatures between approximately 95° and 
135°C. These temperatures are assumed to be the 
maximum temperatures attained by the sandstones, 
as there is no evidence for significant post­
depositional uplift. 

More than 50 core samples were analysed using 
the petrographic microscope, X-ray diffractometer 
(XRD) , and scanning electron microscope (SEM). 
Mineralogical data (Table 1) were obtained from 29 
thin sections by point-counting 300 grains per slide. 

Semi-quantitative XRD analyses on whole-rock 
powder samples and oriented clay « 2 J.lm fraction) 
samples were done following the procedures adapted 
from Wilson (1987) and Griffin (1971). Generally, 

there is a good agreement between the results of 
XRD analysis (Table 2) and the results of thin 
section analysis, as shown graphically in Figure 
13. 

Detrital mineralogy 

The sandstones are well to moderately well 
sorted and silty to very fine-grained (mean grain 
size: 60-100 J.lm). The detrital quartz grains are 
mostly sub angular to angular. In terms of 
framework mineralogy, the sandstones are classified 
as subfeldspathic arenites or sublitharenites (Fig. 
14), their framework composition being: quartz 
(71-84%), feldspars (6-19%), and rock fragments 
(4-18%). Some feldspar grains are partially 
dissolved (Figs. 15B, 15C) or are altered to secondary 
clay minerals. The amount of K-feldspar appears 
to decrease steadily with increasing depth (Fig. 
16). 

Clay generally constitute 2-11% of total rock, 
although some bioturbated sandstones in the D-32 
have up to 25% clay matrix. XRD analyses indicate 
that the clays are mainly kaolinite and illite. 
Chlorite and expandable clays are more common in 
the D-32 sandstones (shallow marine), while 
kaolinite is more abundant in the E-50 and E-90 
(nonmarine). 

Authigenic cements and clay minerals 
Quartz overgrowths increase with increasing 

depth, ranging from 1 to 11% of total rock (Fig. 16). 
The D-32 sandstones contain < 2% overgrowths 
whereas the deeper E-50 and E-90 sandstones have 
up to 10% overgrowths. SEM studies indicate that 
quartz overgrowths in the D-32 sandstones are in 
the early stages of growth, whereas those in the E-
50 and E-90 sandstones are well-developed and 
tend to block pore throats (Fig. 17). 

Authigenic kaolinite occurs as vermiform stacks 
of subhedral to euhedral pseudohexagonal crystals 
in pore spaces, as replacement of detrital clay clasts, 
and as alteration of feldspar and mica (Figs. l8B, 
19A). Another common type of clay is illite which 
forms meniscus-like cements at grain contacts (Fig. 
19D). 

Poikilotopic ferroan calcite cement occurs only 
locally within the E-90 sandstone. This cement 
fills up intragranular spaces, replaces feldspar 
grains, and appears to post-date quartz overgrowth 
and kaolinite (Figs. l8A, 19E, 19F). Framboydal 
pyrite occurs commonly in foraminiferal tests (Fig. 
l8D) and as replacement of mica and matrix clays. 
Some siderite occurs as rhombs, < 10 J.lm across, 
replacing detrital clay and mica flakes (Fig. 18C), 
and appear to predate quartz overgrowths and 
calcite cement. 
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Table 1. Mineralogical composition of sandstones in the Jerneh-3 well, determined by point-counting 300 grains per 
sample. Figures are in % of total rock (minus pore space). 

FORMATION BINTANG BINTANG JERNEH JERNEH 

RESERVOIR UNIT 1).32 [).60 E-50 E-90 

SAMPLE NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

Quartz 56 51 51 50 50 41 55 58 48 51 51 42 61 64 61 46 61 52 51 53 52 65 57 56 50 50 39 55 53 
Polyquartz 3 9 10 15 10 8 10 11 12 9 8 7 1 5 6 6 6 12 8 5 8 5 6 3 7 1 5 6 8 
Chert 4 5 5 4 4 1 3 3 4 1 2 5 - 3 1 - 2 2 - - 1 3 2 2 1 1 3 3 1 
Feldspar 9 7 11 8 8 7 8 5 14 14 10 12 13 8 8 9 6 8 14 16 14 6 7 6 6 10 3 5 8 
Rock fragments 
• Sedimentary 7 5 4 9 8 1 5 6 5 4 6 3 3 3 4 6 7 6 4 6 5 5 3 6 9 3 6 6 8 
• Metamorphic 3 2 4 3 1 1 2 1 1 4 2 1 - 1 1 1 1 1 - - 1 - 1 - - - - - 1 
• Igneous - ------ - - - - - ------ - - - - - - - - - - -

Mica 5 5 3 2 2 3 5 3 5 3 2 5 4 2 2 5 2 3 3 2 2 1 3 4 1 5 - - 1 
Matrix 7 8 6 4 12 32 6 8 8 9 10 12 7 6 4 15 6 6 10 7 6 6 10 8 12 14 2 8 4 
Heavy Minerals 1 1 1 1 - 1 1 2 - 1 1 1 - - 1 2 2 1 1 1 1 2 1 1 1 1 - 1 1 
Glauconite - 1 2 2 4 2 2 - - - - - - - - - - - - - - - - - - - - - -
Detrital Carbonate - 2 1 - 1 - - - - - - - - - - - - - - - - - - - 1 1 - - -
Carbonaceous material - 2 - - - 2 - - - - 2 2 5 - - - - - - - - - - - - 3 - - 1 

Quartz Overgrowth 1 2 2 1 1 1 2 3 3 3 5 4 1 7 10 8 6 8 9 9 6 6 7 10 5 6 - 4 6 
Kaolinite - 1 - - - - - - - 1 - - 1 1 1 - 1 1 - 1 2 - 1 1 2 3 - 2 -
Illite - - - - - - - - - - - - - - 1 - - - - - - - - - 1 - - - -
Chlorite 1 - - 1 - - - - - - - - ------ - - - - 1 - - - - - -
Calcite - - - - - - - - - - - - ------ - - - - - - - - 33 - -
Dolomite - - - - - 1 2 - - - - - - - - - - - - - - - - - - - - - -
Siderite - - - - - 1 - - - - 2 5 3 - - 1 - - - 1 2 1 1 4 4 2 8 8 9 
Pyrite 2 - - - - 1 - - - - - - - - - - - - - - - - - - - - - - -

Porosity (% Bulk voL) 35 34 31 31 28 20 39 34 28 22 30 21 35 30 25 29 28 29 31 25 27 25 20 22 22 20 o 24 26 

Sample No. Depth/m RKB Sample No. 
1. 1256.6 11. 
2. 1260.3 12. 
3. 1263.0 13. 
4. 1264.8 14. 
5. 1266.7 15. 
6. 1268.5 16. 
7. 1284.1 17. 
8. 1387.8 18. 
9. 1408.8 19. 
10. 1409.1 20. 

Diagenetic history 
The diagenetic sequence in the sandstones was 

interpreted from the textural relationships between 
authigenic minerals (Fig. 20). The sequence consists 
of two stages - shallow (0-1,200 m of burial) and 
intermediate (1,200-2,000 m). 

0-1,200 m 
This shallow burial stage is dominated by 

microbial diagenetic processes (e.g. Curtis, 1978) 
which resulted in the formation of pyrite, siderite, 
and calcite. The volume of these early cements is 
< 4%, which suggests that porosity reduction during 
shallow burial was mainly caused by mechanical 
compaction. Assuming that the initial porosity of 
the sandstones was 40% (cf. Houseknecht, 1987), it 
is estimated that about 15-50% of that porosity 

Depth/m RKB Sample No. Depth/m RKB 
1412.8 21. 1935.8 
1414.6 22. 1936.8 
1717.8 23. 1937.7 
1736.4 24. 1938.6 
1738.2 25. 1938.7 
1740.9 26. 1941.3 
1741.8 27. 1941.9 
1741.9 28. 1943.2 
1745.5 29. 1944.1 
1935.2 

was lost during compaction by the reduction of 
primary intergranular porosity. 

1,200-2,000 m 
Further reduction of porosity occurred at depths 

greater than 1,200 m (Fig. 20). Quartz overgrowth 
probably started to form at about 1,200 m depth 
(approximately 90°C), and increases steadily from 
an average of 1% at 1,270 m to 7% at 1,940 m (Fig. 
16). Dissolution ofK-feldspar within the sandstones 
may have provided part of the silica for the 
overgrowths. XRD data (Table 2) indicate that an 
average of 6 vol. % K-feldspar had been dissolved. 
This would have formed only 2 vol. % authigenic 
quartz in the sandstones (Bjorlykke, 1984). The 
remaining 4 vol. % quartz overgrowth must have 
been derived from other sources, notably from clay 
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Table 2. Mineralogy from semi-quantitative whole-rock XRD analysis, Jerneh-3 cores (62 samples). All samples are 
sandstones except those labelled 'sh', which refers to mudstone/siltstone samples. 

DEPTH/m QUARTZ ORTHO PlAGIO CALCITE DOlOM SIDERIT PYRITE MICA KAOLIN 

1256.60 67 10 5 - - - - 13 5 
1260.26 69 6 6 - 1 - - 12 6 
1263.00 70 7 5 - - - - 11 6 
1264.84 63 11 5 - 1 - - 15 6 
1266.66 65 8 6 - 1 1 - 13 6 
1268.50 59 12 5 - 1 - 1 14 7 
1270.32 57 7 6 1 1 - - 19 8 
1272.16 48 10 7 - 2 1 - 22 10 
1273.98sh 29 6 7 - 1 1 - 41 16 
1274.90sh 28 6 5 - 1 1 - 42 16 
1276.42 51 6 7 - 1 1 - 25 10 
1281.00 56 6 9 - 1 - - 18 9 
1284.05 69 8 8 - 1 - - 10 5 
1286.80 39 6 5 - 1 1 - 36 12 

1387.75 74 6 7 - - 1 - 8 4 
1390.19 65 6 5 - - - - 16 8 
1390.80 56 6 5 - 1 1 - 23 8 
1390.54 64 7 8 - - - - 14 6 
1397.51 76 6 5 - - - - 9 3 
1400.26 73 5 6 - - 3 - 9 5 
1403.92 76 6 5 - - - - 7 5 
1408.80 70 11 6 - - - - 9 4 
1412.76 68 7 8 - 1 - - 11 5 
1414.59 70 5 7 - 1 - - 12 5 
1416.42 64 7 6 - - 1 - 17 6 
1418.25sh 58 5 6 - - 2 - 19 10 

1717.76sh 49 - 4 - - 5 - 31 11 
1717.76 65 4 8 - - 1 - 13 10 
1722.64sh 34 6 - - 1 - - 36 23 
1725.38sh 41 4 2 - - 1 - 31 21 
1726.61sh 31 4 2 - - 1 - 40 22 
1728.44sh 49 4 4 - - 4 - 22 17 
1729.04sh 40 5 4 - - 1 - 31 19 
1736.36 76 5 3 - - - - 9 7 
1738.20 82 4 5 - - 1 - 5 3 
1740.02 64 8 6 - - 1 - 14 7 
1740.94 65 7 6 - - - - 15 7 
1741.86 74 5 5 - - 4 - 8 4 
1743.68 61 5 15 - - 1 - 13 5 
1745.52 72 6 6 - - - - 10 5 
1747.34 65 6 6 - - 3 - 12 7 
1748.56 70 5 6 - - - - 11 7 
1749.18 60 3 8 - - 2 - 19 8 
1751.00sh 40 4 4 - - 1 - 39 12 

1930.34sh 42 5 6 - - 1 - 31 15 
1932.18sh 51 3 4 - - 1 - 24 17 
1933.40sh 42 4 4 - - 1 - 33 15 
1934.00sh 59 4 4 - - 1 - 16 16 
1935.22 79 3 6 - - - - 6 6 
1935.84 67 4 5 - - 2 - 12 10 
1936.75 72 3 7 - - 1 - 13 4 
1937.66 66 4 6 - 2 1 - 13 9 
1938.58 79 - 5 - - 1 - 10 6 
1939.50 84 - 4 - - - - 5 6 
1941.32 74 3 6 - - 1 - 10 6 
1941.94 64 2 4 21 - - - 5 3 
1942.24 64 - 4 22 - 1 - 6 3 
1943.16 78 3 5 - - 1 - 7 7 
1944.07 82 2 5 - - - - 6 5 
1945.90sh 53 - 8 - - 1 - 28 10 
1946.82sh 48 - 7 - - 1 - 31 13 
1947.73 36 5 6 - - 1 - 38 15 
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Figure 13. Graphical representation of comparison made between the mineralogical data 
from XRD and those obtained by thin section analyses. 
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Figure 14. Triangular plot of framework composition of sandstones based on thin 
section data. Nomenclature of Folk (1980). . 
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Figure 15. Thin section photomicrographs. A) Porous, very fine-grained, well-sorted sandstone, containing glauconitic grain (g), limestone clast (c), and pore-lining clays (upper 
right corner). D-32 sandstone, 1,263 m . B) At centre of photo is a feldspar grain that has been dissolved and slightly deformed by compaction. D-60 sandstone, 1,408.8 m. C) 
Moderately sorted fine to very fine grained sandstone with partially dissolved feldspar grains (fs). D-60 sandstone, 1,408.8 m . D) Abundant quartz overgrowths with euhedral 
terminations (arrows). E-50 sandstone, 1,738.2 m . 
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Figure 16. Depth plots showing the increase in quartz overgrowth (thin section data) concomitant 
with the loss ofK-feldspar (from whole-rock XRD analyses) during burial. 

reactions in the adjacent shales (Boles and Franks, 
1979), since the interval of study now lies within 
the smectite-to-illite transformation window (Boles 
and Franks, 1979; Dypvik, 1983; Freed and Peacor, 
1989). In a recent world-wide study of sandstones, 
Gluyas and Coleman (1992) have shown that the 
silica content of sandstones increases during 
diagenesis, suggesting that silica cements in 
sandstones are mainly derived from external 
sources. 

Dissolution of K-feldspar also resulted in the 
formation of authigenic kaolinite in the sandstones. 
The 6 vol. % K-feldspar dissolved within the study 
interval could account for only 3 to 4 vol. % 
authigenic kaolinite (Bjorlykke, 1984). The 
remaining half of the 6-7 vol. % total kaolinite 
(Table 2) in the sandstones is thus interpreted to be 
of detrital origin. 

The dissolution of K-feldspar was achieved by 
CO2-rich acidic pore fluids generated in the adjacent 
shales (Schmidt and McDonald, 1979; Lundegard 

and Trevena, 1987). Plagioclase feldspar, however, 
was relatively stable, as indicated by the negligible 
change in the amount of plagioclase with depth 
(Table 2). This suggests that K-feldspar had been 
selectively dissolved during burial. 

K-feldspar dissolution may be represented as: 
2KAlSiaOa + 2H2COa + H20 = Al2Si20 5(OH)4 

+ 4H4Si04 + 2HC03- + 2K+ ......... (i) 
Similarly, plagioclase dissolves as follows: 
2NaAlSiaOa + 2H2COa + H20 = Al2Si20 5(OH)4 

+ 4H4Si04 + 2HC03- + 2Na+ ......... (ii) 
CaAl2Si20 a + 2H2COa + H20 = Al2Si20iOH)4 

+ 2HCOa- + Ca2+ ......... (iii) 
Illitization of smectite in shales may be 

represented by the general equation (Hower et al., 
1976; Boles and Franks, 1979): 

Smectite + Ala+ + K+ + H20 = illite + Si4+ + Na+ 
+ Ca2+ + Fe2+ + Mg2+ + H20 ......... (iv) 

Equation iv indicates that an increase in the 
concentration of Na+ and Ca2+ cations due to 
smectite illitization would inhibit the dissolution of 
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Figure 17. SEM photomicrographs showing quartz overgrowths in different reservoir sandstones. A) Incipient overgrowths (arrow), 1 vol. 
% overgrowths, D-32, 1,263 m. B) Well-developed overgrowths with euhedral terminations, 2 vol. % overgrowths, D-60, 1,408.8 ffi. C) Tight 
packing and restricted pore throats due to quartz overgrowths. 5 vol. % overgrowths, E-50, 1,741.9 ffi. D) Well developed overgrowths as 
in previous photograph. 5 vol. % overgrowths. E-90, 1,944.1 m. 
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Figure 18. Photomicrogr::lph R. A) Ferro::m calcite (Ca) cementing sand grains. Skeletal feldspar grain a t cenire ([,,) . 1,941.9111. 13) Large pa Lch of detriLal kaolinitic clast (ka) 
in D-60 sandsiol1e. 1,409.1 m . C) MicrUl:rYl:iLallil1e siderite (sd) replaces detrital clay matrix. 1,408.8 m. D) D-32 sandstone with foraminiferal test filled with framboydal pyrite 
(py). Arrows point to thin clay coatings on quartz grains , which give the rock a greenish colour . 1,268.5 m. 



Figure 19. SEM photomicrographs showing some of the diagenetic features. A) Authigenic kaolinite in pore space. D-60 sandstone, 1,408.8 m. B) Skeletal 
K-feldspar grain produced by dissolution. D-60 sandstone, 1,408.8 m. C) Etch pits on surface of quartz grain, probably produced by aggressive pore fluids at depth. 
D-60 sandstone, 1,408.8 m. D) Pore-bridging meniscus illite (arrows). D-60 sandstone 1,263 ID. E) Ferroan calcite (c) encloses quartz overgrowth (q). E-90 
sandstone, 1,941.9 ID. F) Ferroan calcite (c) encloses kaolinite (k). 1,941.9 m. 
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Table 3. Porosity gradients of selected basins compiled from the literature. 

Basin (age) Porosity gradient Reference 
-% per 1,000 ft (300 m) 

Texas Gulf Coast (Tertiary) 1.23 Loucks et al., 1974 

North Sea (Jurassic) 2.2-2.9 Selley, 1978; 
Bjorlykke et al., 1986 

East Texas (L. Cretaceous) 2.85 Dutton and Diggs, 1992 

Pattani Basin (Tertiary) 
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Figure 20. Sequence of diagenetic events and their 
relationships to porosity enhancement and reduction. 

plagioclase (by driving equation ii and iii to the 
left). K+ uptake by smectite during the illitization 
process (equation iv) would, however, increase the 
rate of K-feldspar dissolution. This explains why 
K-feldspar was more susceptible to dissolution than 
plagioclase. The same phenomenon seems to have 
occurred in the Pattani Basin where complete 
dissolution of K-feldspar occurred at shallower 
depths than plagioclase (Trevena and Clark, 1986; 
Lundegard and Trevena, 1990). 

The dissolution of K-feldspar did not cause a 
significant increase in the porosity because of 

3.5 Trevena and Clarke, 1986 

continued compaction as well as the precipitation 
of authigenic quartz and kaolinite. The higher rate 
of porosity loss with depth in the Jerneh sandstones 
compared to other basins (ranging from 1.23 to 
3.8%/1,000 ft, Table 3) may be due partly to the 
higher geothermal gradient in the Malay Basin. In 
basins that have high geothermal gradients, 
temperature-dependent diagenetic reactions tend 
to occur at shallower burial depths, and may result 
in more rapid reduction in porosity. 

CONCLUSIONS 

The J erneh field reservoir sandstones occur in 
three facies associations: delta front, delta plain, 
and shallow marine. These facies association are 
interpreted to represent periods of delta 
progradation, delta plain aggradation, and marine 
transgression, respectively. The major sandbodies 
show different degrees of lateral continuity, which 
reflect their depositional environments. Those in 
the delta front facies association have limited areal 
extent and thins laterally rather rapidly. The 
shallow marine sandbodies generally have sheet­
like geometry, and are therefore of greater lateral 
extent. Channel sandbodies are, by nature, long 
and narrow, and thus will require detailed analysis 
to predict their geometries. 

Diagenesis of the J erneh field sandstones is 
interpreted to have involved mainly mechanical 
compaction during the first 1,200 m of burial, 
followed by relatively small amounts of cementation 
by quartz and kaolinite at deeper burial. 
Compaction during shallow diagenesis caused a 
15-50% reduction of the original depositional 
porosity. At depths greater than 1,200 m, where 
formation temperatures exceeded 90°C, the porosity 
was further reduced to its present values of 10-
25% by quartz and kaolinite cementation. 
Authigenic quartz derived its silica partly from 
dissolved detrital K-feldspar and partly from 
smectite-to-illite transformation in the adjacent 
shales. Dissolution of detrital K-feldspar also 
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resulted in the precipitation of authigenic 
kaolinite . 
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APPENDIX - Symbols 

LITHOLOGY GRAIN SIZE 

P:;·:~:.;~:I sand~tone c c'lay 

s silt 

~ interbedded ......... - .... 
.-:--: --- sands ton e-muds ton e vf very fine sand .- ~ 

~ 
f, fs fine sand 

mudstone m medium sand 

coal cs coarse sand 

000 pebbles 

SEDIMENT ARY STRUCTURES 

- parallel lamination 

~ cross tamination 

- wavy bedding ----........--

@.. convolute bedding 

~} flaser bedding 

~ 
herring"':'bone 
cross lamination 

IJ burrows 

1~ bioturbation 

-u- load cast 

9 plant fragments 

7\.. root casts 

f!:> foraminifer 

~ slumps 
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