GEOSEA V Proceedings Vol. 1, Geol. Soc. Malaysia, Bulletin 19, April 1986; pp. 327-347

Recent advances in exploration modelling
for tin deposits and their application
to the Southeast Asian environment

R.G. TayLor AND P.J. PoLLARD
James Cook University of North Queensland, Townsville, Australia

Abstract: During the last decade considerable international exploration attention has been
devoled Lo locating large Lin deposits. In a general sense the programme has been unsuccessful, with
very few major discoveries. However, numerous, new very large occurrences have been discovered
and, perhaps more importantly, the new data base has allowed refinement of exploration models
and increased perception of individual tin systems (pegmatites, porphyry tin, greisen, etc.). The
importance of structural control (stockworks), alteration (argillic) and replacement controls
(carbonate replacement/skarns) have been re-emphasised, and tonnage/grade perspectives refined.

It has been increasingly obvious that the utilisation of sophisticated district analysis is essential
for any regional exploration program, and refinement of techniques and application are becoming
critical to exploration design.

INTRODUCTION

As little as ten years ago the general consensus of market analysts predicted a
good, stable, long-term future for tin. This perception attracted considerable
exploration interest amongst major mining groups, and resulted in an international
search for additional reserves. With the recent decline in the market strength the
formerly unprecedented level of exploration activity has declined sharply.

This intense exploration activity has met with mixed success. In general terms,
there has been considerable expansion of both off-shore and on-shore alluvial sources.
However new, viable discoveries of hard-rock resources have been relatively few. This
is particularly true of high grade reserves, although numerous marginal to
subeconomic, low grade deposits have been delineated.

The new geological data has added considerably to perceptions of the
characteristics of individual targets, tonnage-grade expectations, metallurgical
constraints, and province expectations. It is the purpose of this paper to review and
comment on the results of this recent exploration with emphasis on primary

© occurrences.

TARGET PERSPECTIVE

General

Target perspectives were reviewed by Taylor (1979a); and although it is difficult to
acquire comprehensive information, a reasonable impression of the tonnage-grade
characteristics of major tin deposits can be gained from figure 1A. It is instructive to
compare this with a similar diagram compiled in 1979 (fig. 1B). The major exploration
groups have concentrated on large, low grade targets (> 10 million tonnes) with the
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Fig. 1A. Tonnage grade diagram  world tin deposits.

consequence that numerous cxamples in the medium to large range have been
recognised. The comparison also serves to illustrate the difficulties in acquiring
accurate tonnage-grade information, and it will be noted that the position of many
points has been revised. For example, Hub and Catavi have been considerably reduced
in size, while others such as Renison and Ardlethan have expanded in size. This
problem should be recognised when inspecting the current information, and further
comments are given in table 1. It can also be noted that there have been relatively few
new discoveries. The majority of reserves have been generated from exploration of
known tin occurrences (i.e. Taronga, Baalgammon, Liruie etc.). New discoveries
include East Kemptville, Sundown and Sailor.
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Fig. 1B. Tonnage grade diagram- -deposits from Taylor, 1979a.

Systems

Target perspectives are perhaps best considered from the point of view of
individual systems, and tonnage-grade data for each major type are presented in figure
2.

Within the pegmatites (fig. 2A), economic concentrations of tin are relatively rare,
and the general low grades require either associated rare elements (e.g. tantalum)
and/or high tonnages. Massive, greisen-style deposits (fig. 2B) seem to be characterised
by relatively low grades (i.e. generally less than 0.29 Sn) and consequently require
associated high grade ore, by-products (tungsten), large tonnages and/or favourable
extraction economics.

High tonnage skarn deposits (fig. 2C) seem relatively rare and subeconomic, and
occurrences of viable cassiterite-bearing skarns seem uncommon. Large, carbonate
replacement styles, (fig. 2D) whist equally rare contain exceptional grades, and clearly,
retain their position as a prime exploration target.

Brittle fracture, pipe and vein systems (fig. 2D) commonly contain moderate
tonnages of high grade ore, although on an international scale the majority are small
mining propositions. A rare, large tonnage example (Cinovec) is the combination of
a vein/pipe system with a massive greisen system. Stockwork and sheeted vein systems
(fig. 2F) are relatively common however their bulk low grade renders the majority
uneconomic. Special circumstances prevail where either weathering or primary
alteration results in extreme argillisation (fig. 2G.), i.e where low cost, alluvial style
mining allows extraction. :
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Fig. 2. Tonnage grade diagrams for individual deposit type.
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Major breccia pipe systems (fig. 2H) are rare and relatively low grade, although
tonnages may be significant (Llallagua).

Although it is difficult to generalise on an international scale, the vein systems
offer low to moderate tonnages of high grade ore. The carbonate replacement styles are
extremely attractive, with both high grades and substantial tonnage. The bulk of the
high tonnage, low grade styles require special mining/economic conditions or
associated rare elements. Within this context, the choice of target model demands
careful geographic and geological consideration.

MODELLING

The Carbonate Replacement Model (Renison Type)

From the tonnage grade perspective the carbonate replacement styles of
mineralisation have naturally attracted major attention. The basic
geological/exploration ingredients of this model are shown in figure 3, and include:-

1. carbonate units (carbonate-rich rocks, calcareous clastics, etc.);

2. major fault/fracture zone to focus fluid flow i.e.major fault systems;
3. tin-bearing granitoid (rich in boron + fluorine);

4. distal position relative to mineralising granite;

5. major geophysical response from massive pyrrhotite.

Large scale exploration approaches have operated empirically by selecting
appropriate carbonate-rich terrains and focusing targets via airborne geophysics,
especially magnetics. This approach has successfully delineated geophysical anomalies
in many regions. In the Australian environment targets have been easily generated
within most tin provinces (western Tasmania, New England, Kangaroo Hills and
Herberton). This approach also generated targets in lesser known,minor tinfields, and
even resulted in the discovery of a major extension to the central New South Wales tin
province (Doradilla). However, despite successful target generation both within
Australia and in other regions follow-up exploration has failed to discover any major
additional example of the replacement style. In nearly every case, the geophysical
response proved to be related to various types of iron-rich skarn eg. magnetite.

This lack of success suggests that either the modelling is incorrect, or that such
deposits are extremely rare. It has been suggested by Hutchinson (1979) that the
Renison deposit is essentially exhalative/volcanogenic, and this has caused
considerable discussion (Solomon, 1980; Patterson et al., 1981; Hutchinson, 1982;
Patterson, 1982). Three major examples of this type occur within western Tasmania
(Renison, Cleveland and Mount Bischoff) and are the focus of current research. While
much of this work remains unpublished the unanimous conclusions support the
general features of the replacement model (e.g. Collins, 1981; Patterson et a/. 1981).
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Fig.3. Carbonate replacement model based upon Renison Bell mineralisation, north-west Tasmania,
Australia (Taylor, 1979b). J

The reasons for the apparently rare occurrence remain speculative. The model
requires a specific combination of structural controls allowing large volumes of tin-
rich solutions to interact at relatively low temperatures with favourable host rocks.
Possibly these conditions are only rarely met. Alternatively, there may be additional
ingredients which are poorly understood. For example, the model requires extremely
large amounts of both sulphur and iron. These could be acquired either by leaching
from appropriate sediments during fluid transit, or be derived from the original
magmatic fluid. Possibly the structural and chemical constraints combine to produce
extremely rare situations?

It is interesting to note that the Changpo example is pyrite dominated, which
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suggests that too-great an emphasis on magnetic approaches would risk missing
orebodies.

The systems also appear to contain other metals (lead, zinc, tungsten) which offer
the potential for zonal arrangements which must also be considered within the basic
model (Collins, 1981).

The Greisen Model

Considerable international exploration has centred on locating large, low grade,
massive greisens similar to those documented in Czechoslovakia/G.D.R. The standard
model (Shcherba, 1970; Beus and Zabashkova, 1964) has proved quite successful in
conceptual terms. Numerous examples of these systems have been located, including
the discovery of East Kemptville within an essentially new tinfield. However, several
new perspectives have emerged. Firstly, the large majority of these sytems are open
systems (Tischendorf, 1973) consisting of narrow, dispersed vein-style mineralisation
i.e. have been overoptimistic, and the occurrence of large, viable systems is clearly rare.
Most systems, regardless of tonnage appear to be within the 0.05-0.2%,Sn range
(Sailor, northeast Queensland; Mt Paris, northeast Tasmania; etc).

Despite this, the target still remains attractive given the appropriate
geographic/economic environments, particularly where there is an expectation of
associated elements.

A component of the greisen system which has received some attention has been the
early phase feldspathic alteration/mineralisation. In some regions this appears to
predominate, and offer potentially large, low grade concentrations (e.g. Nigeria).
Within the Australian context similar systems have been located within the Emuford-
Mowbray Creek region of the Herberton tinfield. Minor occurrences have also been
noted at Kangaroo Hills, Cooktown and northwest Tasmania.

In parallel with the greisen systems, massive concentrations are rare and all of the
Australian occurrences are very small, fracture controlled, open systems. However the
commercial occurrence at the Zaaiplaats mine in South Africa (Strauss, 1954) provides
an important new conceptual variation. The Zaaiplaats occurrence (figure 4) is an

GRANOPHYRIC
GRANITE LEASE

GREISENS GRANITE

PEGMATITE

Sunb NS S
T o+ 4+ o+ + o+ o+
+ BOBBEJAANKOP + +
+ + + GRANITE + + +
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x . o R
+ Ry R =l
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Fig. 4. Zaaiplaats Tin Mine, South Africa (modiﬁed from Strauss, 1954).
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essentially closed tin-tungsten system comprising an upper zone of massive, sheet
greisen within a highly altered, feldspathised granite cupola (apogranite). However
there is also a lower horizon paralleling the granite contact which consists of extremely
albitised granite which contains interstitial cassiterite and scheelite. This forms the
bulk of current production, and is amenable to large scale extraction.

This represents an important addition to the greisen model since the potential
presence of lower, mineralised horizons is rarely tested. There are obvious analogies
with molybdenum systems (Mutschler et al, 1981). The horizons of feldspathic
alteration are difficult to recognise, and careful petrological examination is required.

The Stockwork/Brittle Fracture Model

Previous tin exploration modelling had devoted little attention to the occurrence
of stockwork styles. These cannot be regarded as a genetic category but nonetheless
form a structural grouping with large tonnage, low grade potential. Consequently,
numerous systems have been recently tested.

Although only a few examples are shown on figure 2F it is apparent that
stockwork systems are very common and occur at all scales. There are numerous
examples of small-scale, economic concentrations (e.g. Governor Norman,
Queensland); however the larger occurrences rarely bulk at greater than 0.2 9, Sn and
the majority are less than 0.19% Sn. ’

There are many variations (figure 5) upon the stockwork theme such as sheeted
vein systems (Taronga, N.S.W.), brecciated, crackled systems (Kelluhani-quartzite,
Baalgammon-porphyry dyke) and combinations of the above (Governor Norman).
Particularly interesting situations arise where a major brittle fracture-stockwork
system occurs within reactive rocks (Adit 22/Kelapa Kampit) or in combination with
massive greisen systems (Altenberg).

However, in general terms the larger deposits within hard rocks require
specialised conditions to become economic, e.g. associated elements, innovative
mining and/or metallurgical approaches. A new technological approach via colour
sorting as exemplified by the Mount Carbine (QId) tungsten sheeted vein system
requires careful evaluation for similar tin systems.

Breccia Pipe Model

The breccia pipe model as exemplified by several major Bolivian systems (Sillitoe
et al, 1975; Grant et al, 1980), although attractive, seems to be a relatively rare
occurrence. This possibly reflects the lack of subvolcanic tin provinces in general. An
additional major system has been recognised at Ardlethan (N.S.W.) and many small
occurrences of intrusive breccia pipes have been recently recorded (Allman-Ward et al,
1982, Goode and Taylor 1980; Wells, 1978; Pollard and Taylor, 1983; Clarke, 1979).
The Ardlethan system has only minor subvolcanic affinities and the remaining new
occurrences are within relatively deeper environments. This introduces the possibility
of major breccia pipe systems at deeper levels but it still appears that exploration
success is optimised in shallow environments.
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1t should be noted that there is a close association between breccia pipe occurrence
and boron-rich fluids.

Argillic Model

The argillic model has received little attention and again, cannot be regarded as a
purely genetic concept. However, it is apparent that several large scale operations exist
which are viable due to their soft-rock characteristic (“‘softies”’). Such systems occur
within a wide range of model types. Almost any low grade occurrence within regions of
intensive, deep weathering profiles becomes a potential target. Thus Monono,and to a
limited extent, Greenbushes (pegmatites), Rahman Hydraulic (stockwork) etc. have
been able to conduct viable, alluvial-style operations.

Argillic alteration can also occur in many primary tin systems. It is especially well
developed in association with tourmaline (boron)-rich occurrences, particularly with
sheeted quartz-tourmaline veins (Bray and Spooner, 1983) and also with greisen
systems (Pemali). Indeed, there appears to be a spectrum between the flourine-
dominated greisen systems and the less well known boron-rich systems (Cooktown;
Taylor, 1979b, Tate, 1983). Primary argillisation is enhanced by tropical/deep

. weathering. Many argillic-dominated systems form topographic lows, and are overlain
by associated alluvium.

Other Models

The remaining major models have seen relatively few additional conceptual
advances. Skarns have been demonstrated to be extremely abundant although their
general small size, erratic grade distribution and metallurgical complexity has been
amply confirmed. The main types include magnetitic skarns derived by interaction
with either carbonate or basaltic rocks, magnesium-rich skarns derived from
serpentinised mafic and calcareous rocks, and high fluorine wrigglite skarns (Kwak
and Askins, 1981).

The pegmatites still form attractive targets, with new, viable occurrences being
discovered (Greenbushes, W.A.; Goias district, Brazil) and reserves considerably
extended within known deposits (Uis, Namibia).

Vein systems, despite difficulties in establishing ore reserves continue to provide
extensions of known reserves and occasional new discoveries or reopening of former
mines. In this sense they still provide attractive targets, even within high cost
environments (e.g. Wheal Jane-Mount Wellington, Cornwall). .

PROVINCE SELECTION—TARGET GENERATION

The above review of model systems provides a framework for target selection in
general, which must be carefully considered in relation to individual provinces, and
also to individual regions within provinces. It is emphasised that certain styles of
deposits are favoured within specific geological environments. Hence the identification
of province type (Taylor, 1979b) is critical. For instance, massive greisens are favoured
in quiet, plutonic domains, breccia pipes within subvolcanic terrains etc.



EXPLORATION MODELLING FOR TIN DEPOSITS 343

An important initial process both in province selection and target selection is
detailed district analysis. District analysis becomes particularly important when the
nature of the province is uncertain, when exploration activity has generated new
information, and for application of model type target selection.

Numerous approaches are available and the selection and application of
techniques is controlled by the aims of the investigation. Techniques which find wide
application include the following.

1. Generation of a map showing location of all mineralised occurrences. This is
an essential step which frequently requires considerable literature and map
search, and compilation at an appropriate scale. During this phase the primary
data base of published and unpublished material is assembled for later
consideration.

2. Economic perspectives. Utilising the distribution map and data bank, the
following can be considered for establishing both target perspectives and
preliminary exploration potential—

a. tonnage-grade diagrams (regional, and local). (Pollard and Taylor, 1983)
b. production distribution map
c. intensity of mineralisation map (con;ouring).
3. Geological perspectives can be gained by considering—
a. distribution of selected rock types e.g. granites, carbonates etc. This

includes an understanding of the topography of the upper surface of
granitoid intrusions.

o

. metals distribution maps

selected mineral distribution maps (e.g. stannite versus cassiterite)

a o

. lineaments, faults etc.

o

. geophysical maps

laar]

geochemical maps.

g. granitoid maps (e.g. type of granite S,I,A, etc., and where possible relevant
geochemical data).

4. Deposit types
Preparation of deposit type maps is extremely difficult and requires careful and
expert consideration. It is essential to clearly develop classifications: these can
be simple (e.g. primary versus secondary), structural (e.g. veins, stockworks,
massive etc.), or genetic (skarn, replacement, etc.). Genetic classifications are
especially difficult and may be assisted by field inspection. Frequently the
genetic type will be uncertain. Types of plots for consideration include—
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. secondary concentrations

o o®

. types of secondary concentrations (e.g. piedmont, stream, etc.)

primary deposits

e o

. structural types

o®

genetic types
f. mineralogical types—ore constituents

g. mineralogical types—alteration styles/minerals

5. Application of models.

a. Secondary accumulations—prime considerations here include geomorphic
history (recent and palaeo drainage reconstruction) involving plotting river
systems, all known alluvium, relevant topography, basalt flow systems,
faults etc. Special attention should be paid to primary deposits lacking
known alluvials.

b. Primary accumulations—this involves isolating both primary and
secondary ingredients of known models and relating them to the
accumulated data base. Regions/deposits can then be classified according to
the number and/or importance of contained characteristics. For instance, in
developing a carbonate replacement classification, major weighting would
be given to carbonate, presence of pyrrhotite etc. whilst minor weighting
would be given to lead-zinc occurrences. Similarly, in greisen exploration
major attention would be focussed upon developing a classification for
detecting shallow, concealed cusps in known greisen-bearing districts, e.g.
fracture patterns, contact metamorphism, leakage (minor vein
mineralisation), porphyry dykes etc.

DISTRICT ANALYSIS WITHIN THE
MALAYSIAN ENVIRONMENT

Until comparatively recent times relatively little was known concerning the
primary tin deposits of Malaysia. The dominance of alluvial production and the
apparent lack of major hard rock occurrences naturally directed geological attention
towards the secondary environment.

Within the last twenty years, concepts and understanding of factors controiling
mineralisation types have advanced considerably, particularly with respect to
evaluation of environment potential and comprehension of tin systems. New models
have emerged concerning deposit types, €.g. carbonate replacement, intrusive breccia
pipes etc., and older models have been dramatically advanced with respect to their
position within individual systems, and their application to exploration.

The pioneering work by the various surveys, universities and individual authors
has recorded and collated some of the details of the primary mineralisation in
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Malaysia. Although the data bank is still at a preliminary stage, the situation is well
placed for district analysis. It can be noted that potential for greisen systems, carbonate
replacements, stockworks/sheeted veins and argillised (‘softies’) situations is high, and
delineation of favourable zones is well justified. For instance, the eastern tinfields
contain abundant occurrences of magnetite (high iron environments), carbonate
rocks, and documented occurrences of stanniferous pyrrhotite. Numerous deposits of
apparently uncertain origin are recorded (e.g. Machang Setahun), together with
widespread alluvials which have uncertain primary sources. District analysis is amply
justified at both the regional and local level to establish the required data base for the
direct application of the carbonate replacement model.

Despite the recent studies, very little is known concerning province type or details
of individual districts throughout Malaysia. The western and eastern provinces are
correctly regarded as deep—subvolcanic in character (category 2 of Taylor 1979b)
(Yeap, 1979), and as such offer a wide range of potential (fig. 6). Yeap (1979) considers
that the differing mineralisation styles within the two provinces is a function- of the
environment into which the granitoids have been emplaced. Within the Kuala Lumpur
region he recognises two ages of mineralisation with quite different characteristics, and

TIN ENVIRONMENTS - DEPOQSIT TYPES
PIPE €0, STOCKWORK GREISEN ARGILLIC
VEIN BRECCIA PIPE SKARN MAFIC PEGMATITE ~ FELDSPATHIC  VOLCANOGENIC
SYSTEM | (Porphyry Tin) 1 | Reploc. Reptac L L 1 1 1 1

1 POSTOROGENIC CATAGORY TECTONIC INTRUSIVE COLLAPSE COy MAFIC | :
{See Taylor 1979} : : 4 PR : :

A. VOLCANIC

C. DEEP SUBVOLCANIC
- PLUTONIC

|
|
|
|
|
|
|
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|
|
I
1
|

D. PLUTONIC
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Fig. 6. Deposit type development in relation to province type.
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hence different exploration potential. It is probable that international experience will
be repeated in Malaysia, with each individual tinfield containing well-defined and
distinctive characteristics. Several tinfields contain sufficient accumulated data to
allow categorisation via district analysis, and this perspective would provide an
invaluable broad and local scale insight for establishing exploration priorities and
target selection. As alluvial sources decline, the established data bank will become of
increasing importance for primary deposit exploration.

Within the remaining Southeast Asian tin provinces there has been a similar
recent accumulation of geological/exploration data, and each region deserves close
consideration for the application of detailed district analysis.
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