A baseline study of heavy metals composition in the marine sediment of Pulau Layang-Layang, Malaysia

Cover-1
Author : Ling Sin Yi, Junaidi Asis, Zulherry Isnain, Hardianshah Salleh, Mohd Harun Abdullah, Baba Musta*
Publication : Bulletin of the Geological Society of Malaysia
Page : 95-105
Volume Number : 80
Year : 2025
DOI : https://doi.org/10.7186/bgsm80202507

Bulletin of the Geological Society of Malaysia, Volume 80, November 2025, pp. 95 – 105

A baseline study of heavy metals composition in the marine sediment of Pulau Layang-Layang, Malaysia

Ling Sin Yi1,2, Junaidi Asis1, Zulherry Isnain1,2, Hardianshah Salleh1, Mohd Harun Abdullah1,2, Baba Musta*,1,2

1 Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

2 Small Island Research Centre, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

* Corresponding author email address: babamus@ums.edu.my

Abstract: This study establishes comprehensive benchmark data regarding the heavy metal composition in surface marine sediments of Pulau Layang-Layang, Malaysia. Analysis of sediment samples utilizing scanning electron microscopy (SEM) revealed a predominance of biogenic carbonate materials. Total metal concentrations determined through inductively coupled plasma optical emission spectroscopy (ICP-OES) demonstrated a decreasing order of mean values: Ca (384,286 mg/kg) > Mg (10,733 mg/kg) > Na (9,700 mg/kg) > Sr (5,317 mg/kg) > K (474.14 mg/kg) > Fe (343.39 mg/kg) > Al (88.0 mg/kg) > Mn (15.60 mg/kg) > Zn (6.56 mg/kg) > As (3.53 mg/kg) > Cr (3.41 mg/kg) > Ni (1.22 mg/kg). Multivariate statistical analyses, including Pearson correlation, Hierarchical Cluster Analysis (HCA), and Principal Component Analysis (PCA), identified natural sources as the primary contributors to the metal content in the sediments. The heavy metal concentrations remained consistently below the effects range limits (ERL/ERM) established by National Oceanic and Atmospheric Administration’s Screening Quick Reference Tables (SQuiRTs), indicating no risk of adverse biological effects. The sediment quality guidelines further suggested that the marine ecosystem maintains its health, with all sampling points exhibiting safe heavy metal levels. Consequently, this baseline study serves as a crucial reference for future monitoring and comparisons of heavy metal contents with other Bornean sedimentary islands or along Malaysia’s coastline.

Keywords: Heavy metals, Pearson Correlation Matrix, Hierarchical Cluster Analysis, sediment quality guideline, baseline study

References

Adams, W.J., Kimerle, R.A., & Barnett, J.R., 1992. Sediment quality and aquatic life assessment. Environmental Science & Technology, 26(10), 1865-1875.

Algül, F., & Beyhan, M., 2020. Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Scientific Reports, 10(1), 11782.

Ankindinova, O., Hiscott, R.N., Aksu, A.E., & Grimes, V., 2019. High-resolution Sr-isotopic evolution of Black Sea water during the Holocene: Implications for reconnection with the global ocean. Marine Geology, 407, 213-228.

ASTM, 2018. Standard Test Method for Determination of the Proportion of Phases in Portland Cement and Portland-Cement Clinker Using X-Ray Powder Diffraction Analysis, ASTM C1365-18. ASTM International, West Conshohocken.

Bantan, R.A., Al-Dubai, T.A., & Al-Zubieri, A.G., 2020. Geo-environmental assessment of heavy metals in the bottom sediments of the Southern Corniche of Jeddah, Saudi Arabia. Marine Pollution Bulletin, 161, 111721.

Berg, R.D., Solomon, E.A., & Teng, F.Z., 2019. The role of marinesediment diagenesis in the modern oceanic magnesium cycle. Nature Communications, 10(1), 4371.

Buchman, M.F., 2008. Screening Quick Reference Tables (SQuiRTs). National Oceanic and Atmospheric Administration, United States. 34 p.

Burdige, D., 2007. The Components of Marine Sediments. In: Burdige, D.J. (Ed.), Geochemistry of Marine Sediments. Princeton University Press, Princeton. 624 p.

Chakraborty, S., Bhattacharya, T., Singh, G., & Maity, J.P., 2014. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: A biomonitoring approach for pollution assessment. Ecotoxicology and Environmental Safety, 100, 61-68.

Cho, Y.G., Lee, C.B., & Choi, M.S., 1999. Geochemistry of surface sediments off the southern and western coasts of Korea. Marine Geology, 159(1-4), 111-129.

Culkin, F., & Cox, R.A., 1966. Sodium, potassium, magnesium, calcium and strontium in sea water. Deep Sea Research and Oceanographic Abstracts, 13(5), 789-804.

Hamilton, W., 1979. Tectonics of the Indonesian region. U.S. Geological Survey Professional Paper series 1078. U.S. Govt. Print. Off., 345 p.

Hayes, C.T., Costa, K.M., Anderson, R.F., Calvo, E., Chase, Z., Demina, L.L., & Zhang, J., 2021. Global ocean sediment composition and burial flux in the deep sea. Global Biogeochemical Cycles, 35(4), e2020GB006769.

Hutchison, C.S., 2010. The north-west Borneo trough. Marine Geology, 271(1-2), 32-43.

Hutchison, C.S., & Vijayan, V.R., 2010. What are the Spratly islands? Journal of Asian Earth Sciences, 39(5), 371-385.

Jafarabadi, A.R., Bakhtiyari, A.R., Toosi, A.S., & Jadot, C., 2017. Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran. Chemosphere, 185, 1090-1111.

Josso, P., Pelleter, E., Pourret, O., Fouquet, Y., Etoubleau, J., Cheron, S., & Bollinger, C., 2017. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements. Ore Geology Reviews, 87, 3-15.

Kaiser, H.F., 1960. The application of electronic computers to factor analysis. Educ. Psychol. Measur., 20, 141–151.

Kristiansen, K.D., Kristensen, E., & Jensen, E.M.H., 2002. The influence of water column hypoxia on the behaviour of manganese and iron in sandy coastal marine sediment. Estuarine, Coastal and Shelf Science, 55(4), 645-654.

Li, C., Song, C., Yin, Y., Sun, M., Tao, P., & Shao, M., 2015. Spatial distribution and risk assessment of heavy metals in sediments of Shuangtaizi estuary, China. Marine Pollution Bulletin, 98(1-2), 358-364.

Li, Y.H., & Schoonmaker, J.E., 2003. Chemical Composition and Mineralogy of Marine Sediments. Treatise on Geochemistry, 7, 407.

Ling, S.Y., Junaidi, A., Harun, A. M., & Baba, M., 2022. Geochemical Assessment of Heavy Metal Contamination in Coastal Sediment Cores from Usukan Beach, Kota Belud, Sabah, Malaysia. Journal of Physics: Conference Series, 2314(1), 012008.

Ling, S.Y., Junaidi, A., & Baba, M., 2023a. Distribution of metals in coastal sediment from northwest sabah, Malaysia. Heliyon, 9(2), e13271.

Ling, S.Y., Junaidi, A., Abdullah, M.H., & Baba, M., 2023b. Assessment of sediment quality due to heavy metal contamination in marine sediments along the northwest coast of Sabah, Malaysia. China Geology, CG-2022-0076.

Lusty, P.A., Hein, J.R., & Josso, P., 2018. Formation and occurrence of ferromanganese crusts: Earth’s storehouse for critical metals. Elements, 14(5), 313-318.

Wang, M., Shan, Z., Liu, T., Xiong, Z., Yan, Q., & Wang, Y., 2019. Chemical-Physical Mechanism of Marine Sediments. IOP Conference Series: Earth and Environmental Science, 304(5), 052052.

Neal, T.C., Rankey, E.C., Tiwol, C.M., Awang, D., & Jakobsen, K.P., 2018. Oceanographic Controls on Sedimentology and Geomorphology of a Modern Shallow Marine Carbonate Platform: Pulau Layang-Layang, South China Sea. AAPG ACE 2018, AAPG Datapages/Search and Discovery Article #90323.

Ohde, S., & Kitano, Y., 1984. Coprecipitation of strontium with marine Ca-Mg carbonates. Geochemical Journal, 18(3), 143-146.

Penrose, W.R., & Woolson, E.A., 1974. Arsenic in the marine and aquatic environments: Analysis, occurrence, and significance. Critical Reviews in Environmental Science and Technology, 4(1-4), 465-482.

Romero-Murillo, P., Gallego, J.L., & Leignel, V., 2023. Marine Pollution and Advances in Biomonitoring in Cartagena Bay in the Colombian Caribbean. Toxics, 11(7), 631.

Salem, D.M.A., Khaled, A., El Nemr, A., & El-Sikaily, A., 2014. Comprehensive risk assessment of heavy metals in surface sediments along the Egyptian Red Sea coast. Egyptian Journal of Aquatic Research, 40(4), 349-362.

Satpathy, K.K., Mohanty, A.K., Prasad, M.V.R., Natesan, U., & Sarkar, S.K., 2012. Studies on the variations of heavy metals in the marine sediments off Kalpakkam, East Coast of India. Environmental Earth Sciences, 65, 89-101.

Schlanger, S.O., & Douglas, R.G., 1975. The pelagic ooze‐chalk‐limestone transition and its implications for marine stratigraphy. In: Kenneth J. Hsü & Hugh C. Jenkyns (Eds.), Pelagic Sediments: on Land and under the Sea. Blackwell Scientific Publications, Oxford. 447 p.

Schlosser, P., Swift, J.H., Lewis, D., & Pfirman, S.L., 1995. The role of the large-scale Arctic Ocean circulation in the transport of contaminants. Deep Sea Research Part II: Topical Studies in Oceanography, 42(6), 1341-1367.

Sulaiman, A., & Shaarani, N.A., 2020. Heavy Metals Distribution and Trend in the Surface Seabed Sediments of the East Coast of Peninsular Malaysia, Sabah and Sarawak Offshore. Conference Paper: Mineral and Geoscience Department Malaysia Conference 2014, Aseania Hotel Langkawi, Malaysia. https:// www.researchgate.net/publication/340645290.

Sun, Y., Jörn, P., Yu, H., Xudong, W., Shanggui, G., Yongbo, P., Duofu, C., & Dong, F., 2020. Formation of tubular carbonates within the seabed of the northern South China Sea. Minerals, 10(9), 768.

Sweere, T.C., Dickson, A.J., & Vance, D., 2023. Nickel and zinc micronutrient availability in Phanerozoic oceans. Geobiology, 21(3), 310-322.

Turchyn, A.V., & DePaolo, D.J., 2019. Seawater chemistry through Phanerozoic time. Annual Review of Earth and Planetary Sciences, 47, 197-224.

U.S. EPA (Environmental Protection Agency), 2014. Method 6010D (Revision 4): Inductively coupled-plasma atomic emission spectrometry. Environmental Protection Agency, Washington, DC. 35 p.

Ugwu, I.M. & Igbokwe, O.A., 2019. Sorption of heavy metals on clay minerals and oxides: A review. In: Serpil Edebali (Ed.), Advanced sorption process applications. IntechOpen. doi: 10.5772/intechopen.75857.

Waheed, Z., Benzoni, F., Van Der Meij, S.E., Terraneo, T.I., & Hoeksema, B.W., 2015. Scleractinian corals (Fungiidae, Agariciidae and Euphylliidae) of Pulau Layang-Layang, Spratly Islands, with a note on Pavona maldivensis (Gardiner, 1905). ZooKeys, 517, 1-37.

Wang, X., Weng, Y., Wei, H., Meng, Q., & Hu, M., 2019. Particle obstruction and crushing of dredged calcareous soil in the Nansha Islands, South China Sea. Engineering Geology, 261, 105274.

Ward, J.H., 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc., 58, 236–244.

Yi, L.S., Asis, J., & Musta, B., 2021. The quality assessment of heavy metals in marine sediments from Usukan coastal beach, Kota Belud, Sabah. Borneo Science, 42(1), 1-11.

Yuan, G.D., Theng, B.K.G., Churchman, G.J., & Gates, W.P., 2013. Clays and clay minerals for pollution control. Developments in Clay Science, 5, 587-644.

Zhang, H., Gu, W., Li, Y. J., & Tang, M., 2020. Hygroscopic properties of sodium and potassium salts as related to saline mineral dusts and sea salt aerosols. Journal of Environmental Sciences, 95, 65-72.

Zhou, X., Rosenthal, Y., Haynes, L., Si, W., Evans, D., Huang, K.F., Honisch, B., & Erez, J., 2021. Planktic foraminiferal Na/Ca: A potential proxy for seawater calcium concentration. Geochimica et Cosmochimica Acta, 305, 306-322.

Manuscript received 13 June 2024;
Received in revised form 22 September 2024;
Accepted 20 February 2025
Available online 28 November 2025

https://doi.org/10.7186/bgsm80202507

0126-6187; 2637-109X / Published by the Geological Society of Malaysia.
© 2025 by the Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC-BY) License 4.0.