Bulletin of the Geological Society of Malaysia, Volume 75, May 2023, pp. 13 – 23
Hamzah Hussin1,3,4,*, Mohd Hariri Arifin2
1 Jabatan Geosains, Fakulti Sains Bumi, Universiti Malaysia Kelantan, 17600 Jeli, Kelantan, Malaysia
2 Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
3 Geohazard Research Group, Fakulti Sains Bumi, Universiti Malaysia Kelantan, 17600 Jeli, Kelantan, Malaysia
4 UMK-Tropical Reseach Center (UMK-TRaCe), Fakulti Sains Bumi, Universiti Malaysia Kelantan, 17600 Jeli, Kelantan, Malaysia
* Corresponding author email address: hamzah.h@umk.edu.my
Abstrak: Dalam dekad terakhir ini, penggunaan sistem pengelasan jasad batuan dalam rekabentuk kejuruteraan telah digunakan secara intensif. Kebimbangan mengenai potensi kegagalan yang boleh berlaku secara tempatan atau global pada sesebuah jasad batuan yang boleh berlaku disebabkan oleh pengaruh geologi (contoh; ketakselanjaran, air, luluhawa) dan bukan geologi (contoh; beban binaan, gegaran) perlu diberi perhatian serius. Kemampuan sistem pengelasan untuk menunjukkan keadaan jasad batuan secara ringkas dan efektif sangat membantu dalam kerja-kerja kejuruteraan. Terdapat dua keadaan sistem pengelasan digunakan untuk pembinaan bawah tanah iaitu aktiviti penerowongan dan perlombongan. Bagi pembinaan terowong, sistem seperti Rock Mass Rating / Perkadaran Jasad Batuan (RMR), Sistem Q, Kaedah Japanese Highway (JH), Geological Strength Index / Indeks Kekuatan Geologi (GSI) dan Rock Mass Quality Rating / Perkadaran Kualiti Jasad Batuan (RMQR) merupakan sistem yang biasa digunakan. Walau bagaimanapun, kelemahan sistem tersebut ialah ketidaksesuaian digunakan untuk jasad batuan yang terlindung akibat litupan shotcrete kerana kekangan untuk mendapatkan maklumat satah ketakselanjaran. Kelemahan ini menyebabkan perlunya satu kaedah kajian dan sistem pengelasan jasad batuan yang baru untuk mengatasi kekurangan tersebut.
Kata Kunci: Pengelasan jasad batuan, penerowongan, pembinaan bawah tanah, shotcrete
Abstract: In the last few decades, rock mass classification had been used intensively in engineering design. The concern arises for the potential occurrence of localized or global rock mass failure due to geological (such as discontinuities, water, weathering) and non-geological (such as construction load, vibration) factors should be taken into consideration. The ability of a classification system to represent the rock mass condition in a straightforward and effective way can assist in engineering works. Two classification systems can be applied in underground construction such as tunneling and mining. In tunnel construction, the Rock Mass Rating (RMR), Q System, Japanese Highway (JH) Method, Geological Strength Index (GSI) and Rock Mass Quality Rating (RMQR) are commonly used. However, these systems cannot be applied for rock mass covered by shotcrete due to difficulty in observing the discontinuity planes. Therefore, a new investigation method and rock mass classification for rock mass covered by shotcrete is vital to overcome this limitation.
Keywords: Rock mass classification, tunneling, underground excavation, shotcrete
RUJUKAN / REFERENCES
A’ssim, A., & Xing, Z.Y., 2010. Most Used Rock Mass Classifications for Underground Opening. Am. J. Engg. & Applied Sci., 3(2), 403–11.
Akagi, W., Ito, T., Shiroma, H., Sano, A., Shinji, M., Nishi, T., & Nakagawa, K., 2001. A Proposal of New Rock Mass Classification for Tunnelling. In: T. Kimura, M. Tateyama, & K. Adachi (Eds.), Modern Tunnelling Science and Technology, Swets & Zeitlinger, Kyoto. 371-377.
Aksoy, C.O., 2008. Review of Rock Mass Rating Classification: Historical Developmet, Applications and Restrictions. Journal of Mining Science, 44(1), 51–63.
Aydan, Ö., R. Ulusay, & T. Kawamoto, 1997. Assessment of Rock Mass Strength for Underground Excavations. International Journal of Rock Mechanics and Mining Sciences, 34, 3–4.
Aydan, Ö., & Tokashiki, N., 2015. Rock Mass Quality Rating (RMQR ) for Rock Engineering. International Journal of the JCRM, 11(1), 17–20.
Aydan, Ö., Reşat Ulusay, & Naohiko Tokashiki, 2014. A New Rock Mass Quality Rating System: Rock Mass Quality Rating (RMQR) and Its Application to the Estimation of Geomechanical Characteristics of Rock Masses. Rock Mechanics and Rock Engineering, 47(4), 1255–76.
Azit, R., & Ismail, M.A.M., 2014. Rock Mass Classification System Used for Pahang-Selangor Raw Water Transfer Tunnel. In: Rohana Hassan, Marina Yusoff, Zulhabri Ismail, Norliyati Mohd Amin, & Mohd Arshad Fadzil (Eds.), CIEC 2013: Proceedings of the International Civil and Infrastructure Engineering Conference 2013, Springer Singapore, Singapore. 519–29. https://doi.org/10.1007/978-981-4585-02-6_45.
Barton, N., Reidar, L., & J. Lunde, 1974. Engineering Classification of Rock Masses for the Design of Tunnel Support. Rock Mechanics, 6(4), 189–236.
Barton, N., 1999. TBM Performance Estimation in Rock Using QTBM. Tunnels and Tunneling International, 31(9), 30–33.
Barton, N., 2002. Some New Q-Value Correlations to Assist in Site Characterisation and Tunnel Design. International Journal of Rock Mechanics and Mining Sciences, 39(2), 185–216.
Bieniawski, Z.T., 1973. Engineering Classification of Jointed Rock Masses. Transactions of South African Institution of Civil Engineers, 15(12), 335–44.
Bieniawski, Z.T., 1976. Rock Mass Classification in Rock Engineering Applications. Proceedings of the Symposium on Exploration for Rock Engineering, 97–106. AA Balkema.
Bieniawski, Z.T., 1979. The Geomechanics Classification in Rock Engineering Applications. Proceedings Fourth Congress of the International Society For Rock Mechanics, 2, 41–48.
Bieniawski, Z.T., 1989. Engineering Rock Mass Classifications. John Wiley & Sons, New York. 272 p.
Bieniawski, Z.T., 1975. Case Studies: Prediction of Rock Mass Behavior by the Geomechanics Classification. Proceedings of 2nd Australia–New Zealand Conference Geomechanics, Brisbane, 36–41.
Bieniawski, Z.T., 1974. Geomechanics Classification of Rock Masses and Its Application in Tunneling.” Proc. 3rd Int. Cong. Rock Mech., 2, 27–32.
Brook, N., & P.G.R. Dharmaratne, 1985. Simplified Rock Mass Rating System for Mine Tunnel Support. Institution of Mining and Metallurgy Transactions, 94.
Cai, M., P.K. Kaiser, H. Uno, Y. Tasaka, & M. Minami, 2004. Estimation of Rock Mass Deformation Modulus and Strength of Jointed Hard Rock Masses Using the GSI System. International Journal of Rock Mechanics and Mining Sciences, 41(1), 3–19. https://doi.org/10.1016/S1365-1609(03)00025-X.
Celada, B., Isidoro Tardáguila, Pedro Varona, A. Rodríguez, & Z.T. Bieniawski, 2014. Innovating Tunnel Design by an Improved Experience-Based RMR System. In: Arsenio Negro (Ed.), World Tunnel Congress 2014, 3, 1–9.
Chen, C., & Liu, Y., 2007. A Methodology for Evaluation and Classification of Rock Mass Quality on Tunnel Engineering. Tunnelling and Underground Space Technology, 22, 377–87. https://doi.org/10.1016/j.tust.2006.10.003.
Chen, L., J. Wang, Z.H. Zong, J. Liu, R. Su, Y.H. Guo, Y.X. Jin, W.M. Chen, R.L. Ji, H.G. Zhao, X.Y. Wang, X. Tian, H. Luo, & M. Zhang, 2015. A New Rock Mass Classification System QHLW for High-Level Radioactive Waste Disposal. Engineering Geology, 190, 33–51. https://doi.org/10.1016/j. enggeo.2015.02.006.
Cummings, R.A., F.S. Kendorski, & Z.T. Bieniawski, 1982. Caving Rock Mass Classification and Support Estimation. US Bureau of Mines Contract Report J., 100103.
Da-Ming, Y., 2010. Construction and Development of Emergency Refuge System in Underground Mine. Coal Science and Technology, 11, 3.
De Vallejo, L.I.G., 1983. A new rock classification system for underground assessment using surface data. International Symposium on Engineering Geology and Underground Construction, hlm. 85–94.
Dong, Y., Cao, Y., & Zhang, J., 2016. Evaluation of rock mass quality of highway tunnel using electrical resistivity imaging. International Journal of Geomechanics, 16(3), 04015065.
Ghani, M.F. A., Norbert Simon, Goh, T.L., Tuan Rosli Tuan Mohamed, & Abdul Ghani Rafek, 2016. Kajian Ketumpatan Lineamen Dalam Penilaian Potensi Jatuhan Batuan Di Kawasan Lembah Kinta. Sains Malaysiana, 45(12), 1887–96.
Goh, T.L., Md Selim Reza, Abdul Ghani Rafek, Ailie Sofyiana Serasa, Azimah Hussin, & Khai Ern Lee, 2016. Assessment of Ultimate Bearing Capacity Based on the Hoek-Brown Failure Criterion. Sains Malaysiana, 45(11), 1603–7.
Hajiazizi, M., & Khatami, R.S., 2013. Seismic Analysis of the Rock Mass Classification in the Q-System. International Journal of Rock Mechanics and Mining Sciences, 62, 123–30.
Hoek, E., T.G. Carter, & M.S. Diederichs, 2013. Quantification of the Geological Strength Index Chart. 47th US Rock Mechanics/ Geomechanics Symposium, American Rock Mechanics Association. San Francisco.
Hoek, E., P.K. Kaiser, & W.F. Bawden, 1995. Support of Underground Excavations in Hard Rock. CRC Press, Roterdam. 228 p.
Hoek, E., & Brown, E.T., 1997. Practical Estimates of Rock Mass Strength. International Journal of Rock Mechanics and Mining Sciences, 34(8), 1165–86.
Kendorski, F.S., R.A. Cummings, Z.T. Bieniawski, & E.H. Skinner, 1983. Rock Mass Classification for Block Caving Mine Drift Support. Proceedings of the Rapid Excavation and Tunneling Conference, 193–223. International Society for Rock Mechanics, Chicago.
Kong, L., Wei, J., & Feng, X., 2015. Application of Electrical Resistivity Imaging Method for Rock Mass Quality Index Evaluation in Tunnel Construction. Journal of Rock Mechanics and Geotechnical Engineering, 7(6), 742-747.
Krauland, N., P. Söder, & G. Agmalm, 1989. Determination of Rock Mass Strength by Rock Mass Classification—Some Experiences and Questions from Boliden Mines. International Journal of Rock Mechanics and Mining Sciences & Geomechanics (Abstracts), 26, 115–23.
Laubscher, D.H., & Jakubec, J., 2001. The MRMR Rock Mass Classification for Jointed Rock Masses. In: Richard L. Bullock, & William A. Hustrulid, (Eds.), Underground Mining Methods: Engineering Fundamentals and International Case Studies. Society of Mining, Metallurgy and Exploration, Inc., Colarado. 475–481.
Laubscher, D.H., 1977. Geomechanics Classification of Jointed Rock Masses-Mining Applications. Trans. Instn. Min. Metall., 86, A1-8.
Liu, Z., & Dang, W., 2014. Rock Quality Classification and Stability Evaluation of Undersea Deposit Based on M-IRMR. Tunnelling and Underground Space Technology, 40, 95–101.
Mahmoud, S., & Sadek, M.A., 2017. Evaluation of Subsurface Geological Structures Using Electrical Resistivity Imaging Technique. Arabian Journal of Geosciences, 10(10), 229.
Marinos, P.V., 2010. New Proposed GSI Classification Charts for Weak or Complex Rock Masses. Bulletin of the Geological Society of Greece, 43(3), 1248–58.
Marinos, P., & Hoek, E., 2000. GSI: A Geologically Friendly Tool for Rock Mass Strength Estimation. ISRM International Symposium, Melbourne. International Society for Rock Mechanics.
Marinos, V., P. Marinos, & Evert Hoek, 2005. The Geological Strength Index: Applications and Limitations.” Bulletin of Engineering Geology and the Environment, 64(1), 55–65.
Mark, C., Chase, F.E. & Molinda, G.M., 1994. Design of Longwall Gate Entry Systems Using Roof Classification. In: R.C. Simon, C.L., Mark, C., Tuchman, & R.J., Repsher (Eds.), Proc. of New Technology for Longwall Ground Control, Final Proc., Pittsburgh, 5-8.
Merkin, V., & Konyukhov, D., 2016. Development of Moscow Underground Space Plans, Results, Perspectives. Procedia Engineering, 165, 663-72.
Milne, D., J. Hadjigeorgiou, & R. Pakalnis, 1999. Rock Mass Characterization for Underground Hard Rock Mines. Tunnelling and Underground Space Technology, 13(4), 383–91.
Miranda, T., 2007. Geomechanical Parameters Evaluation in Underground Structures: Artificial Intelligence, Bayesian Probabilities and Inverse Methods. PhD Thesis, University of Minho, Barga, Portugal.
Miranda, T., L. Ribeiro e Sousa, & Joaquim, T., 2014. Updating of the Hierarchical Rock Mass Rating (HRMR) System and a New Subsystem Developed for Weathered Granite Formations. International Journal of Mining Science and Technology, 24(6), 769–75. https://doi.org/http://dx.doi.org/10.1016/j. ijmst.2014.10.006.
Palmstrøm, A., 1995. Characterization of Rock Masses by the RMi for Use in Practical Rock Engineering Purposes. PhD Thesis, University of Oslo, Norway.
Palmstrom, A., & Broch, E., 2006. Use and Misuse of Rock Mass Classification Systems with Particular Reference to the Q-System. Tunnelling and Underground Space Technology, 21, 575–93. https://doi.org/10.1016/j.tust.2005.10.005.
Pantelidis, L., 2009. Rock Slope Stability Assessment through Rock Mass Classification Systems. International Journal of Rock Mechanics & Mining Sciences, 46, 315–25. https://doi. org/10.1016/j.ijrmms.2008.06.003.
Rahimi, B., Shahriar, K., & Sharifzadeh, M., 2014. Evaluation of Rock Mass Engineering Geological Properties Using Statistical Analysis and Selecting Proper Tunnel Design Approach in Qazvin–Rasht Railway Tunnel. Tunnelling and Underground Space Technology, 41, 206–22. https://doi.org/http://dx.doi. org/10.1016/j.tust.2013.12.010.
Rahmati, A., Lohrasb Faramarzi, & Manouchehr Sanei, 2014. Development of a New Method for RMR and Q Classification Method to Optimize Support System in Tunneling. Frontiers of Structural and Civil Engineering, 8(4), 448–55.
Romana, M., 2015. 2014 RMR New Guidelines for Tunnels. 13th ISRM International Congress of Rock Mechanics. International Society for Rock Mechanics, Montreal, 1-8.
Ryu, H.H., Gye Chun Cho, Sung Don Yang, & Hyun Kang Shin, 2010. Development of a Tunnel Electrical Resistivity Prospecting System and Its Application. PhD Thesis, KAIST, Daejeon, Korea.
Şen, Z., & Sadagah, B.H., 2003. Modified Rock Mass Classification System by Continuous Rating. Engineering Geology, 67(3), 269–80.
Shamsabadi, A., Oraee, K., & Kalantari, M., 2016. Stability Evaluation of Rock Slopes using Electrical Resistivity Tomography. Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 572-581.
Singh, B., & Goel, R.K., 1999. Rock Mass Classification: A Practical Approach in Civil Engineering. Elsevier. 267 p.
Sonmez, H., & Ulusay, R., 1999. Modifications to the Geological Strength Index (GSI) and Their Applicability to Stability of Slopes. International Journal of Rock Mechanics and Mining Sciences, 36(6), 743–60. https://doi.org/http://dx.doi. org/10.1016/S0148-9062(99)00043-1.
Stille, H., & Palmström, A., 2003. Classification as a Tool in Rock Engineering. Tunnelling and Underground Space Technology, 18(4), 331–45.
Terzaghi, K., 1946. Rock Defects and Loads on Tunnel Support. In: Robert Videtto Proctor & Thomas Lester White (Eds.), Rock Tunneling with Steel Supports. Commercial Shearing & Stamping Company. 271 p.
Tomás, R., A. Cuenca, M. Cano, & J. García-Barba, 2012. A Graphical Approach for Slope Mass Rating (SMR). Engineering Geology, 124(1), 67–76. https://doi.org/10.1016/j. enggeo.2011.10.004.
Tuǧrul, A., 1998. The Application of Rock Mass Classification Systems to Underground Excavation in Weak Limestone, Atatürk Dam, Turkey. Engineering Geology, 50(3–4), 337–45. https://doi.org/http://doi.org/10.1016/S0013-7952(98)00034- 9.
Unal, E., 1996. Modified Rock Mass Classification: M-RMR System. Milestones in Rock Engineering, the Bieniawski Jubilee Collection. Balkema, Rotterdam, 203–223.
Ünal, E., İ. Özkan, & R. Ulusay, 1992. Characterization of Weak, Stratified and Clay-Bearing Rock Masses. Rock Characterization: ISRM Symposium, Eurock’92, Chester, UK, 14–17 September 1992.
Vähäaho, I., 2016. An Introduction to the Development for Urban Underground Space in Helsinki. Tunnelling and Underground Space Technology, 55, 324–28.
Vallejo, L.I.G. De., 1983. A New Rock Classification System for Underground Assessment Using Surface Data. In International Symposium on Engineering Geology and Underground Construction, 85–94. Portuguese Geotechnical Society, Lisbon.
Venkateswarlu, V., A.K. Ghose, & N.M. Raju, 1989. Rock-Mass Classification for Design of Roof Supports—a Statistical Evaluation of Parameters. Mining Science and Technology, 8(2), 97–107.
Wang, X., Sun, Y., Wang, H., & Chen, M., 2018. Investigation of rock mass properties and coal seam distribution using electrical resistivity tomography in a coal mine. Geotechnical and Geological Engineering, 36(3), 1641-1650.
Warren, S.N., Raj R. Kallu, & Chase K. Barnard, 2016. Correlation of the Rock Mass Rating (RMR) System with the Unified Soil Classification System (USCS): Introduction of the Weak Rock Mass Rating System (W-RMR). Rock Mechanics and Rock Engineering, 49(11), 4507–18. https://doi.org/10.1007/ s00603-016-1090-1.
Wickham, G.E., H.R. Tiedemann, & Eugene H. Skinner, 1972. Support Determinations Based on Geologic Predictions. Proceedings of Conference Rapid Excavation and Tunneling, 43–64.
Wickham G. E. & Tiedemann, H.R., 1974. Ground Support Prediction Model (RSR Concept). Advance Research Projects Agency of the Department of Defense, Bureau of Mines H0220075.
Wu, Y., Wang, L., Liu, H., & Li, G., 2017. Investigation of geological structures and rock mass properties using electrical resistivity imaging in a tunnel. Tunnelling and Underground Space Technology, 68, 152-162.
Manuscript received 4 October 2021;
Received in revised form 6 April 2023;
Accepted 28 April 2023
Available online 26 May 2023
DOI: https://doi.org/10.7186/bgsm75202303
0126-6187; 2637-109X / Published by the Geological Society of Malaysia.
© 2023 by the Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC-BY) License 4.0.