Bulletin of the Geological Society of Malaysia, Volume 76, November 2023, pp. 3 – 25
Marcus R. Dobbs1,*, Qalam A’zad Rosle2, Dalila Ahmad3, Helen F. Burke1, Muhammad Ezwan Dahlan2, Jontih Enggihon2, Richard B. Haslam1, Nicholas Jacob2, Kenneth Lawrie4, A. Graham Leslie4, Alvyn Clancey Mickey5, Muhammad Ramzanee Mohd Noh2, Syed Omar2, Nikki A. Smith4, Steve Thorpe1
1 British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, NG12 5GG, UK
2 Dept. of Mineral & Geoscience Malaysia, Selangor & W. Persekutuan, 6th & 7th Floor, Bangunan Darul Ehsan, No. 3, Jalan Indah, Section 14, 40000 Shah Alam, Selangor D.E., Malaysia
3 Kuala Lumpur City Hall, Menara DBKL 1, Jalan Raja Laut, 50350 Kuala Lumpur, Malaysia, Malaysia
4 British Geological Survey, the Lyell Centre, Research Avenue South, Edinburgh, EH14 4AP, UK
5 Dept. of Mineral & Geoscience Malaysia, Aras 9, Jalan Tun Abdul Razak, Presint 2, 62100 Putrajaya, Malaysia
* Corresponding author email address: marc1@bgs.ac.uk
Abstract: The objective of UN Sustainable Development Goal 11 is to make cities and human settlements inclusive, safe, resilient and sustainable. Geoscience can play a significant role in achieving targets within this goal by developing a better understanding of geological properties and processes within urban environments, and by ensuring that this understanding is integrated into urban development. A key step in this process will be enhancing awareness of urban geology among non-geoscience decision-makers, so that inherent subsurface risks and benefits are understood and accounted for during all phases of development. Three-dimensional geological models are an effective tool for geologists to communicate with stakeholders in government and industry during that process. They can also provide a framework to enable geological data and information to be integrated into Building and City Information Models, and thus facilitate more effective infrastructure and utility asset management. This paper describes the modelling workflow adopted by a consortium of geoscientists from government, industry and academia to deliver the first 3D geological model of Kuala Lumpur – 3DKL v1.0. The modelling workflow involved: digitising borehole logs from site investigation reports and storing them in a dedicated geospatially-enabled SQLite borehole database; viewing and interpreting that borehole data using QGIS software; generating multiple orthogonally oriented cross-section profiles across the modelled area using Groundhog Desktop software; and integrating the information derived from the interpreted boreholes, surface data and cross-section profiles to generate a 3D geological model in Leapfrog Geo software. 3DKL v1.0 has demonstrated proof-of-concept: we have developed a workflow, based largely on freely-available software, for transforming borehole information, previously captured in paper records, into a conceptual 3D model. The modelling process has also identified areas where geological knowledge and data need to be enhanced if 3DKL is to fulfil its potential to support more sustainable and resilient urban development in Kuala Lumpur.
Keywords: UN Sustainable Development Goals, urban geology, Engineering Geology, Kuala Lumpur geology, 3D modelling, digital workflows, geoscience databases
References
AGS, 2020. Electronic Transfer of Geotechnical and Geoenvironmental Data. AGS4. Edition 4.1–December 2020. https://www.ags.org. uk/content/uploads/2020/12/AGS4-v-4.1-December-2020-1. pdf.
Ailleres, L., Jessell, M., de Kemp, E., Caumon, G., Wellmann, F., Grose, L., Armit, R., Lindsay, M., Giraud, J., Brodaric, B., Harrison, M. & Courrioux, G., 2019. Loop – Enabling 3D stochastic geological modelling. ASEG Extended Abstracts, 1, 1-3. https://doi.org/10.1080/22020586.2019.12072955.
Azizi, S.E.B.H., Ling, N.-L., Sia, S.-G. & Ismail, B., 2019. The changing role of geological surveys in Malaysia. Geological Society, London, Special Publications, 499. https://doi. org/10.1144/SP499-2019-55.
Bergado, D.T. & Selvanayagam, A.N., 1987. Pile foundation problems in Kuala Lumpur Limestone, Malaysia. Quarterly Journal of Engineering Geology, 20, 159–175.
Campbell, D. De Beer, J., Mielby, S., Van Campenhout, I.,Van Der Meulen, M., Erikkson, I., Ganerod, G., Lawrence, D., Bacic, M., Donald, A., Gogu, R.C. & Jelenek, J., 2017. Transforming the Relationships Between Geoscientists and Urban Decision-Makers: European Cost Sub-Urban Action (TU1206). Procedia Engineering, 209, 4–11. https://doi. org/10.1016/j.proeng.2017.11.124.
Campbell, S.D.G., Merritt, J.E., O Dochartaigh, B.E., Mansour, M., Hughes, A.G., Fordyce, F.M., Entwisle, D.C., Monaghan, A.A. & Loughlin, S., 2010. 3D geological models and hydrogeological applications: supporting urban development – a case study in Glasgow-Clyde, UK. Zeitschrift der Deutschen Gesellschaft fur Geowissenschaften, 161(2), 251–262.
Chua, S., Switzer, A.D., Kearsey, T.I., Bird, M,I., Rowe, C., Chiam, K., & Horton, B.P., 2020. A new Quaternary stratigraphy of the Kallang River Basin, Singapore: implications for urban development and geotechnical engineering in Singapore. Journal of Asian Earth Sciences, 200.
Culshaw, M.G., 2005. From concept towards reality: developing the attributed 3D geological model of the shallow subsurface. Quarterly Journal of Engineering Geology and Hydrogeology, 38, 231–284.
Culshaw, M.G., Reeves, H.J., Jefferson, I., & Spink, T., 2009. Engineering Geology for Tomorrow’s Cities. Geological Society of London, Engineering Geology Special Publication, 22, 303 p.
Culshaw, M.G. & Price, S.J., 2011. The contribution of urban geology to the development, regeneration and conservation of cities. The 2010 Hans Cloos lecture. Bulletin of Engineering Geology and the Environment, 70, 333. https://doi.org/10.1007/ s10064-011-0377-4.
Dearman, W.R. 1991. Engineering geological mapping. Butterworth- Heinemann Ltd., Oxford. 387 p.
De Mulder, E.F.J., McCall, G.J.H. & Marker, B.R. 2001. Geosciences for urban planning and management. In: Marinos, P.G., Koukis, G.C., Tsiambaos, G.C. & Stoutnaras, G.C. (Eds.), Proceedings of the International Symposium on “Engineering Geology and the Environment,” Athens. Swets & Zeitlinger B.V., Lisse, The Netherlands, 4, 3417–3438.
Dodd, T.J.H., Gillespie, M.R., Leslie, A.G., Kearsey, T.I., Kendall, R.S., Bide, T.P., Dobbs, M.R., Millar, I.L., Lee, M.K.W, Chiam, K.S.L., & Goay, M., 2019. Paleozoic to Cenozoic sedimentary bedrock geology and lithostratigraphy of Singapore. Journal of Asian Earth Sciences, 180, (2019)103878.
Dodd, T.J., Leslie, A.G., Gillespie, M.R., Dobbs, M.R., Bide, T.P., Kendall, R.S., Kearsey, T.I., Chiam, K., & Goay, M., 2020. Deep to shallow-marine sedimentology and impact of volcanism within the Middle Triassic Palaeo-Tethyan Semantan Basin, Singapore. Journal of Asian Earth Sciences, 196, 1 July 2020, 104371.
Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D. & Alsdorf, D., 2007. The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004. https:// doi.org/10.1029/2005RG000183.
Ford, J., Burke, H., Royse, K. & Mathers, S., 2008. The 3D geology of London and the Thames Gateway: a modern approach to geological surveying and its relevance in the urban environment. Proceedings of the 2nd European Regional Conference of the International Association of Engineering Geology and the Environment (EuroEnGeo 2008), Madrid, Spain. Asociación Española de Geologia Aplicada a la Ingeniería, Madrid. CD-ROM Paper No. 015.
Geological Survey Malaysia, 1976. Selangor: Sheet 94 Kuala Lumpur. New Series Peninsular Malaysia 1:63,360 scale geological map.
Ghani, A.A., Searle, M.P., Robb, L.J. & Chung, S.L., 2013. Transitional I-S type characteristic in the Main Range Granite, Peninsular Malaysia. Journal of Asian Earth Sciences, 76, 225–240.
Gillespie, M.R., Kendall, R.S., Leslie, A.G., Millar, I.L., Dodd, T. J.H., Kearsey, T.I., Bide, T.P., Goodenough, K.M., Dobbs, M. R., Lee, M.K.W., & Chiam, K.S.L., 2019. The igneous rocks of Singapore: new insights to Palaeozoic and Mesozoic assembly of the Sukhothai Arc. Journal of Asian Earth Sciences, 183, 103940.
Gill, J.C. & Smith, M., 2021. Geosciences and the Sustainable Development Goals. Springer International Publishing, Switzerland. 474 p.
Gobbett, D.J., 1964. The lower palaeozoic rocks of Kuala Lumpur, Malaysia. Federation Museums Journal, 9, 67–79.
Grose, L., Ailleres, L., Laurent, G., & Jessell, M., 2021. LoopStructural 1.0: time-aware geological modelling. Geosci. Model Dev., 14, 3915–3937. https://doi.org/10.5194/gmd-14- 3915-2021, 2021.
Gue, S. & Singh, M., 2000. Design and construction of a LRT Tunnel in Kuala Lumpur, Malaysia. Seminar on Tunnelling, Institution of Engineers, Kuala Lumpur, 28 February 2000. http://www. gnpgeo.com.my/download/publication/2000_01.pdf.
Hareyani, Z. & De Freitas, M.H., 2011. Re-evaluation of rock core logging for the prediction of preferred orientations of karst in the Kuala Lumpur Limestone Formation. Engineering Geology, 117, 159–169. https://doi.org/10.1016/j.enggeo.2010.10.006.
Hassanzadeh, A., Vázquez-Suñé, E., Corbella, M. & Criollo, R., 2022. An automatic geological 3D cross-section generator: Geopropy, an open-source library. Environmental Modelling & Software, 149. Article No. 105309, 25 p. https://doi. org/10.1016/j.envsoft.2022.105309.
Hutchison, C.S. & Tan, D.N.K., 2009. Geology of Peninsular Malaysia. Hutchison. In: Hutchison, C.S. & Tan, D.N.K. (Eds.), University of Malaya and Geological Society of Malaysia, Kuala Lumpur. 479 p.
Jabatan Mineral dan Geosains Malaysia, Negeri Selangor dan Wilayah Pesekutuan, 2003. Laporan Kerja-Kerja Pengimbasan (Scanning) Data Log Geologi Lubang Gerudi, Peta-Peta Tapak Dan Penggerudian Tapak Di Kawasan Wilayah Persekutuan Kuala Lumpur.
Jabatan Mineral dan Geosains Malaysia Negeri Selangor dan Wilayah Persekutuan, 2015. Engineering Geology Map of Kuala Lumpur and Surrounding Areas: Wilayah Persekutuan Series L8010, Part of Sheets 94a, 94b, 94c, 94d, 94e & 94f. 1:25,000 scale map.
Jessell, M., Ogarko, V., de Rose, Y., Lindsay, M., Joshi, R., Piechocka, A., Grose, L., de la Varga, M., Ailleres, L. & Pirot, G., 2021. Automated geological map deconstruction for 3D model construction using map2loop 1.0 and map2model 1.0. Geosci. Model Dev., 14, 5063–5092. https://doi.org/10.5194/ gmd-14-5063-2021, 2021.
Kearsey, T., Bricker, S., Whitbread, K., Terrington, R. & Monaghan, A.A., 2020. Foundations of the Future: 3D Geological Modelling for Sustainable Cities. Geological Society of America Abstracts with Programs. 52, No. 6, 2020. https:// doi.org/10.1130/abs/2020AM-357051.
Kearsey, T., Burke, H. & Bricker, S. 2022. Urban geoscience report : Capacity for 3D urban modelling. British Geological Survey, Nottingham, UK. 71 p. (OR/22/043). https://nora.nerc.ac.uk/ id/eprint/533116.
Kelsey, C. & Valentina, G., 2022. Exciting opportunities in planetary structural geology and tectonics: An early career perspective. Frontiers in Earth Science, 10. 7 p. https://doi.org/10.3389/ feart.2022.1046652.
Kessler, H., Mathers, S. & Sobisch, H-G., 2009. The capture and dissemination of integrated 3D spatial knowledge at the British Geological Survey using GSI3D software and methodology. Computers & Geosciences, 35(6), 1311–1321.
Kessler, H., Wood, B., Morin, G., Gakis, A., McArdle, G., Dabson, O., Fitzgerald, R., & Dearden, R., 2015. Building Information Modelling (BIM): a route for geological models to have real world impact. In: GSA 2015, Maryland, USA, 1–4 Nov 2015. Geological Society of America.
Khan, M.S., Kim, I.S. & Seo, J., 2023. A boundary and voxel-based 3D geological data management system leveraging BIM and GIS. International Journal of Applied Earth Observation and Geoinformation, 118, 103277. https://doi.org/10.1016/j. jag.2023.103277.
Khan, M.S., Park, J. & Seo, J., 2021. Geotechnical property modeling and construction safety zoning based on GIS and BIM integration. Appl. Sci., 11(9), 4004. https://doi.org/10.3390/ app11094004.
Lagesse, R., Hambling, J., Gil, J., Dobbs, M., Lim, C. & Ingvorsen, P., 2022. The role of Engineering Geology in delivering the United Nations Sustainable Development Goals. Quarterly Journal of Engineering Geology and Hydrogeology, 55, 15 p. https://doi.org/10.1144/qjegh2021-127.
Legget, R.F., 1982. Geology under cities. Reviews in Engineering Geology, Volume 5. Geological Society of America, Boulder, Colorado. 131 p.
Lelliott, M.R., Bridge, D.McC., Kessler, H., Price, S.J. & Seymour, K.J., 2006. The application of 3D geological modelling to aquifer recharge assessments in an urban environment. Quarterly Journal of Engineering Geology and Hydrogeology, 39, 293-302.
Leslie, A.G., Dobbs, M.R., Ng, T. F., Rosle, Q.A., Mohd Noh, M.R., Dodd, T.J.H. & Gillespie, M.R., 2020. The Ukay Perdana Shear Zone in Kuala Lumpur: A crustal-scale marker of early Jurassic orogenic deformation in Peninsular Malaysia. Bulletin of the Geological Society of Malaysia, 69, 135–147. https:// gsm.org.my/articles/702001-101827/.
Leslie, A.G., Dodd, T.J.H., Gillespie, M.R., Kendall, R.S., Bide, T. P., Dobbs, M.R., Kearsey, T.I., Lee, M.K.W., & Chiam, K.S.L., 2019. Ductile and brittle deformation in Singapore: A record of Mesozoic orogeny and amalgamation in Sundaland, and of post-orogenic faulting. Journal of Asian Earth Sciences, 181, 103890.
Malard, A., Randles, S., Hausmann, P., Jeannin, P.Y., Lopez, S., Courrioux, G., & Vogel, M., 2019. Visual KARSYS – a web service for modelling karst aquifers. 46th Annual Congress of the International Association of Hydrogeologists.
McKenzie, A., Le Quoc, H.L. & Bricker, S., 2018. Smart Geology for Future Hanoi – Understanding the role of Geology for Sustainable Development. The 15th Regional Congress on Geology, Minerals and Energy Resources of Southeast Asia (GEOSEA XV) 13-21 October 2018, Vietnam.
Mielby, S., Eriksson, I., Diarmad, S., Campbell, G. & Lawrence, D., 2017. Opening up the subsurface for the cities of tomorrow the subsurface in the planning process. Procedia Engineering, 209, 12–25.
Minerals and Geoscience Department Malaysia, 2011. Kuala Lumpur: New Series L7010 Sheet 94 Selangor Darul Ehsan. Geology and Mineral Resources of the Kuala Lumpur-Kelang Area. Map Report No. 22. 1:63,360 scale geological map.
OpenStreetMap contributors, 2019. Retrieved from https://planet. openstreetmap.org. Accessed 26.8.2019.
Petrone, P., Allocca, V., Fusco, F., Incontri, P. & De Vita, P., 2023. Engineering geological 3D modeling and geotechnical characterization in the framework of technical rules for geotechnical design: the case study of the Nola’s logistic plant (southern Italy). Bull. Eng. Geol. Environ. 82, article no. 12(2023). https://doi.org/10.1007/s10064-022-03017-y.
Price, S.J., Terrington, R.L., Ford, J.R, Crofts, R., Diamond, K. & Seymour, K., 2008. A 3D assessment of urban aquifer vulnerability using geological and buried asset models: A case study from Knowsley Industrial Park, NW England. In: European Conference of the International Association for Engineering geology, Madrid, Spain, 15–20 Sept. 2008.
Quek, L.X., Ghani, A.A., Lai, Y.M., Lee, H.Y., Saidin, M., Roselee, M.H., Badruldin, M.H., Hassan, A., Meor, H., Aziz, A. & Hafiz, J., 2018. Absolute age evidence of Early to Middle Ordovician volcanism in Peninsular Malaysia. Current Science, 115, 2291–2296.
Rose, G., Kirk, P., Gibbons, C. & Lander, A., 2018. Three dimensional geological models in ground engineering: when to use, how to build and review, benefits and potential pitfalls. Australian Geomechanics, 53(3), 79–88.
Royse, K. Aldiss, D., Terrington, R. & Ford, J., 2008. 3D modelling and visualisation of digital geoscientific data as an aid to land-use planning in the urban environment: examples from the Thames Gateway and their limitations. In: Mathers, S.J. (Ed.), Extended Abstracts of the 2nd International GSI3D Conference, British Geological Survey Open File Report OR/08/054, Keyworth, UK. 10-11.
Schaaf, A., de la Varga, M., Wellmann, F., & Bond, C.E., 2021. Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1. Geosci. Model Dev., 14, 3899–3913. https:// doi.org/10.5194/gmd-14-3899-2021, 2021.
Shu, Y.K., 1969. Some NW trending faults in the Kuala Lumpur and other areas. Warta Geologi, 17, 1–5.
Smith, N.T., Merritt, J.W., & Phillips, E.R., 2022. High-resolution 3D geological modelling of heterogeneity in poorly exposed glacial deposits using sedimentary and glaciotectonic architectural element analysis: a case example from Sellafield in west Cumbria, UK. Quarterly Journal of Engineering Geology and Hydrogeology, 56, 36 p. https://doi.org/10.1144/qjegh2022-02.
Stauffer, P.H., 1968. The Kuala Lumpur Fault Zone: a proposed major strike-slip fault across Malaya. Warta Geologi, 15, 2–4.
Tan, B.K., 2009. Urban geology of Kuala Lumpur and Ipoh, Malaysia. In: Culshaw, M.G., Reeves, H.J., Jefferson, I. & Spink, T.W. (Eds.), Engineering Geology of Tomorrow’s Cities. Geological Society, London, Engineering Geology Special Publication 22, CD paper number 24.
Tan, B.K., 2017. Engineering geology in Malaysia – some case studies. Bulletin of the Geological Society of Malaysia, 64, 65–79.
Tan, B.K. & Komoo, I., 1990. Urban Geology: Case Study of Kuala Lumpur, Malaysia. Engineering Geology, 28, 71–94.
Tan, B.K. & Rau, J.L., 1986. Role of geology in planning and development of urban centres in southeast Asia. Proceedings of Landplan II. Association of Geoscientists in Development (AGID) Report Series, No 12. Bangkok.
Terrington, R.L., Thorpe, S., Kessler, H., Bidarmaghz, A., Choudhary, R., Yuan, M. & Bricker, S., 2019. Making Geology Relevant for Infrastructure and Planning. International Conference on Smart Infrastructure and Construction 2019 (ICSIC). January 2019, 403–409.
Turner, A.K., Kessler, H. & Van Der Meulen, M.J., 2021. Applied Multidimensional Geological Modeling: Informing Sustainable Human Interactions with the Shallow Subsurface. Wiley- Blackwell, UK. 672 p.
United Nations, 2015. Transforming our world: The 2030 Agenda for Sustainable Development.
United Nations Economic and Social Commission for Asia and the Pacific (UNESCAP) 2019. Kuala Lumpur Malaysia. https://www.unescap.org/projects/closing-the-loop/cities/ kuala-lumpur.
de la Varga, M., Schaaf, A., & Wellmann, F., 2019. GemPy 1.0: open-source stochastic geological modeling and inversion, Geosci. Model Dev., 12, 1–32. https://doi.org/10.5194/gmd- 12-1-2019, 2019.
Yee, F.K., 1983. The Palaeozoic Sedimentary Rocks of Peninsular Malaysia – Stratigraphy and Correlation. Warta Geologi, 9, 223–225.
Zhou, F., Li, M., Huang, C., Liang, H., Liu, Y., Zhang, J., Wang, B. & Hao, M., 2022. Corrigendum: Lithology-based 3D modeling of urban geological attributes and their engineering application: A case study of Guang’an city, SW China. Front. Earth Sci., 10, 1010503. https://doi.org/10.3389/feart.2022.1010503.
Zhuang, C., Zhu, H., Wang, W., Liu, B., Ma, Y., Guo, J., Liu, C., Zhang, H., Liu, F. & Cui, L., 2023. Research on urban 3D geological modeling based on multi-modal data fusion: a case study in Jinan, China. Earth Sci. Inform., 16, 549–563. https:// doi.org/10.1007/s12145-022-00897-2.
Manuscript received 20 June 2023;
Received in revised form 29 September 2023;
Accepted 17 October 2023
Available online 29 November 2023
DOI: https://doi.org/10.7186/bgsm76202302
0126-6187; 2637-109X / Published by the Geological Society of Malaysia.
© 2023 by the Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC-BY) License 4.0.
Automated page speed optimizations for fast site performance