Bulletin of the Geological Society of Malaysia, Volume 79, May 2025, pp. 5 – 13
Coral reef classification using drone screening in Teluk Segadas, Pulau Pangkor
Nurul Nadiah Misman1,*, Muhammad Noor Amin Zakariah1, Khairul Arifin Mohd Noh1, Hasrizal Shaari2, Wan Nurzalia Wan Saelan2
1 Department of Petroleum Geoscience, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
2 Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21300, K. Terengganu, Terengganu, Malaysia
* Corresponding author email address: nurul_22002268@utp.edu.my
Abstract: Coral reefs are complex and diverse marine ecosystems that provide numerous benefits to the environment and to humans. However, they face multiple threats that jeopardise their well-being, necessitating effective conservation efforts. Traditional methods for assessing coral reefs are time-consuming and resource-intensive, limiting the scale and frequency of data collection. This study aims to assess the potential of drone technology for studying coral reefs in Teluk Segadas, Pulau Pangkor, where spatial information on benthic habitats is limited. The primary objectives are to determine the presence of coral reefs, and the density of coral cover in the study area. A total of 330 aerial images of Teluk Segadas were taken using a DJI Pro Mavic 2. The aerial photos were combined into a single orthophoto image. Later, segmentation and classification were performed using Structure-from-Motion (SfM) and a supervised classification technique, K-Nearest Neighbour (KNN). The orthomosaic image of Teluk Segadas is presented in this study and five classes were identified, that is live coral, dead coral, sediment, coral rubble and rock. Overall, the shallow water in Teluk Segadas was dominated by live coral (38947.38 m2) along with sediment (9273.9 m2). The rest of the area was covered by dead coral (4946.08 m2), rubble (3709.56 m2) and rock (1854.78 m2). Furthermore, coral coverage of Teluk Segadas, Pulau Pangkor was 66% and was dominated by massive coral. The overall accuracy was 73% with producer accuracy (PA) and user accuracy (UA) values ranging from 60-80% and the misclassification rate ranging between 20-30%. This study demonstrates that images captured by drone in any environment setting can be processed, classified, and assessed for accuracy. In addition, this study provides a different perspective in understanding coral reef well-being, and aids in monitoring and management efforts.
Keywords: Drone, mapping, spatial, aerial photography, environment, coral reef, Pulau Pangkor
References
Ahmad, A., Tahar, K.N., Udin, W.S., Hashim, K.A., Darwin, N., Hafis, M., Room, M., Hamid, N.F.A., Azhar, N.A.M. & Azmi, S.M., 2013. Digital aerial imagery of unmanned aerial vehicle for various applications. Proceedings – 2013 IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2013.
Anggoro, A., Siregar, V.P. & Agus, S.B., 2018. Klasifikasi multiskala untuk pemetaan zona geomorfologi dan habitat bentik menggunakan metode Obia di Pulau Pari (Multiscale classification for geomorphic zone and benthic habitats mapping using Obia method in Pari Island). Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital, 14(2), 89-76.
Ayamga, M., Akaba, S. & Nyaaba, A.A., 2021. Multifaceted applicability of drones: A review. Technological Forecasting and Social Change, 167, 120677.
Bennett, M.K., Younes, N. & Joyce, K., 2020. Automating drone image processing to map coral reef substrates using google earth engine. Drones, 4(3), 50. https://doi.org/10.3390/ drones4030050.
Bento, R., Hoey, A.S., Bauman, A.G., Feary, D.A. & Burt, J.A., 2016. The implications of recurrent disturbances within the world’s hottest coral reef. Marine Pollution Bulletin, 105(2), 466-472.
Browne, N.K., Tay, J.K.L., Low, J., Larson, O. & Todd, P.A., 2015. Fluctuations in coral health of four common inshore reef corals in response to seasonal and anthropogenic changes in water quality. Marine Environmental Research, 105, 39-52.
Burke, L., Reytar, K., Spalding, M. & Perry, A., 2011. Reefs at Risk Revisited. World Resources Institute, Washington D.C. 114 p.
Casella, E., Collin, A., Harris, D., Ferse, S., Bejarano, S., Parravicini, V., Hench, J.L. & Rovere, A., 2017. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs, 36(1), 269-275.
Chong, W.S., Zaki, N.H.M., Hossain, M.S., Muslim, A.M. & Pour, A.B., 2022. Introducing Theil-Sen estimator for sun glint correction of UAV data for coral mapping. Geocarto International, 37(15), 4527-4556.
Cornet, V.J. & Joyce, K.E., 2021. Assessing the potential of remotely-sensed drone spectroscopy to determine live coral cover on heron reef. Drones, 5(2), 29. https://doi.org/10.3390/ drones5020029.
Costanza, R., Groot, R. de, Sutton, P., Ploeg, S. van der, Anderson, S.J., Kubiszewski, I., Farber, S. & Turner, R.K., 2014. Changes in the global value of ecosystem services. Global Environmental Change, 26(1), 152-158.
Doukari, M., Katsanevakis, S., Soulakellis, N. & Topouzelis, K., 2021. The effect of environmental conditions on the quality of UAS orthophoto-maps in the coastal environment. ISPRS International Journal of Geo-Information, 10(1), 18. https:// doi.org/10.3390/ijgi10010018.
Eddy, T.D., Cheung, W.W.L. & Bruno, J.F., 2018. Historical baselines of coral cover on tropical reefs as estimated by expert opinion. PeerJ, 6, e4308. https://doi.org/10.7717/peerj.4308.
Eddy, T.D., Lam, V.W.Y., Reygondeau, G., Cisneros-Montemayor, A.M., Greer, K., Palomares, M.L.D., Bruno, J.F., Ota, Y. & Cheung, W.W.L., 2021. Global decline in capacity of coral reefs to provide ecosystem services. One Earth, 4(9), 1278-1285.
Fabricius, K., De’ath, G., McCook, L., Turak, E. & Williams, D.M.B., 2005. Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Marine Pollution Bulletin, 51, 384-398.
Goatley, C.H.R. & Bellwood, D.R., 2013. Ecological Consequences of Sediment on High-Energy Coral Reefs. PLoS ONE, 8(10), e77737. https://doi.org/10.1371/journal.pone.0077737.
Hamylton, S.M., 2017. Mapping coral reef environments: A review of historical methods, recent advances and future opportunities. Progress in Physical Geography, 41(6), 803-833.
Harris, D.L., Rovere, A., Casella, E., Power, H., Canavesio, R., Collin, A., Pomeroy, A., Webster, J.M. & Parravicini, V., 2018. Coral reef structural complexity provides important coastal protection from waves under rising sea levels. Science Advances, 4(2), eaao4350(2018). https://doi.org/10.1126/ sciadv.aao4350.
Heap, A.D., Harris, P.T. & Fountain, L., 2009. Neritic carbonate for six submerged coral reefs from northern Australia: Implications for Holocene global carbon dioxide. Palaeogeography, Palaeoclimatology, Palaeoecology, 283(1–2), 77-90.
Hebbeln, D., Wienberg, C., Dullo, W.C., Freiwald, A., Mienis, F., Orejas, C. & Titschack, J., 2020. Cold-water coral reefs thriving under hypoxia. Coral Reefs, 39(4), 853-859.
Hennige, S.J., Larsson, A.I., Orejas, C., Gori, A., Clippele, L.H. De, Lee, Y.C., Jimeno, G., Georgoulas, K., Kamenos, N.A. & Roberts, J.M., 2021. Using the Goldilocks Principle to model coral ecosystem engineering. Proceedings of the Royal Society B: Biological Sciences, 288(1956), 853-859.
Jones, L.A., Mannion, P.D., Farnsworth, A., Bragg, F. & Lunt, D.J., 2022. Climatic and tectonic drivers shaped the tropical distribution of coral reefs. Nature Communications, 13(1), 3120.
Misman, N.N., Zakariah, M.N.A., Saelan, W.N.W., Shaari, H. & Noh, K.A.M., 2023. A Review: Modern Coral Characterization Studies in Malaysia. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 28(4), 351–368.
Mohamad, M.N., Reba, M.N.M. & Hossain, M.S., 2022. A screening approach for the correction of distortion in UAV data for coral community mapping. Geocarto International, 37(24), 7089-7121.
Mount, R.E., 2007. Rapid monitoring of extent and condition of seagrass habitats with aerial photography “mega-quadrats”. Journal of Spatial Science, 52(1), 105-119.
Muslim, A.M., Chong, W.S., Safuan, C.D.M., Khalil, I. & Hossain, M.S., 2019. Coral reef mapping of UAV: A comparison of sun glint correction methods. Remote Sensing, 11(20), 2422. https://doi.org/10.3390/rs11202422.
Nababan, B., Mastu, L.O.K., Idris, N.H. & Panjaitan, J.P., 2021. Shallow-water benthic habitat mapping using drone with object based image analyses. Remote Sensing, 13(21), 4452. https:// doi.org/10.3390/rs13214452.
Praveena, S.M., Siraj, S.S. & Aris, A.Z., 2012. Coral reefs studies and threats in Malaysia: A mini review. Reviews in Environmental Science and Biotechnology, 11(1), 27-39.
Reef Check Malaysia, 2018. Status of coral reefs in Malaysia, 2015. Reef check Malaysia survey report. Reef Check, Kuala Lumpur. 94 p.
Ricardo, G.F., Harper, C.E., Negri, A.P., Luter, H.M., Abdul Wahab, M.A. & Jones, R.J., 2021. Impacts of water quality on Acropora coral settlement: The relative importance of substrate quality and light. Science of the Total Environment, 777, 146079. https://doi.org/10.1016/j.scitotenv.2021.146079.
Riegl, B.M. & Purkis, S.J., 2005. Detection of shallow subtidal corals from IKONOS satellite and QTC View (50, 200 kHz) single-beam sonar data (Arabian Gulf; Dubai, UAE). Remote Sensing of Environment, 95(1), 96-114.
Roelfsema, C. & Phinn, S., 2008. Evaluating eight field and remote sensing approaches for mapping the benthos of three different coral reef environments in Fiji. Remote Sensing of Inland, Coastal, and Oceanic Waters, 7150, 95-108.
Roelfsema, C., Phinn, S., Jupiter, S., Comley, J. & Albert, S., 2013. Mapping coral reefs at reef to reef-system scales, 10s-1000s km2, using object-based image analysis. International Journal of Remote Sensing, 34(18), 6367-6388.
Safuan, C.D.M., Ali, A., Zainol, Z., Ali, A., Akhir, M.F., Muslim, A.M. & Bachok, Z., 2018. A Baseline Assessment of Coral Reef in Malacca Straits, Malaysia. Ocean Science Journal, 53(2), 275-283.
Safuan, M., Wee, H.B., Ibrahim, Y.S., Idris, I. & Bachok, Z., 2016, Current status on community structure of coral reefs around west coast of Peninsular Malaysia using coral video transect technique. Journal of Sustainability Science and Management, 11 (Special Issue 1), 107-117.
Sale, P.F., Agardy, T., Ainsworth, C.H., Feist, B.E., Bell, J.D., Christie, P., Hoegh-Guldberg, O., Mumby, P.J., Feary, D.A., Saunders, M.I., Daw, T.M., Foale, S.J., Levin, P.S., Lindeman, K.C., Lorenzen, K., Pomeroy, R.S., Allison, E.H., Bradbury, R.H., Corrin, J., Edwards, A.J., Obura, D.O., Sadovy de Mitcheson, Y.J., Samoilys, M.A. & Sheppard, C.R.C., 2014. Transforming management of tropical coastal seas to cope with challenges of the 21st century. Marine Pollution Bulletin, 85(1), 8-23.
Spalding, M., Burke, L., Wood, S.A., Ashpole, J., Hutchison, J. & zu Ermgassen, P., 2017. Mapping the global value and distribution of coral reef tourism. Marine Policy, 82, 104-113.
Suggett, D.J., Dong, L.F., Lawson, T., Lawrenz, E., Torres, L. & Smith, D.J., 2013. Light availability determines susceptibility of reef building corals to ocean acidification. Coral Reefs, 32(2), 327-337.
Toda, T., Okashita, T., Maekawa, T., Alfian, B.A.A.K., Rajuddin, M.K.M., Nakajima, R., Chen, W., Takahashi, K.T., Othman, B.H.R. & Terazaki, M., 2007. Community structures of coral reefs around Peninsular Malaysia. Journal of Oceanography, 63(1), 113-123.
Waheed, Z., Han, D. & Syed Hussein, M.A., 2021. Mapping coral reef using photogrammetry technique: A preliminary study at Pulau Udar Besar, Sabah, Malaysia. Borneo Journal of Marine Science and Aquaculture (BJoMSA), 5(2), 70–74. https://doi. org/10.51200/bjomsa.v5i2.2604.
Wahidin, N., Siregar, V.P., Nababan, B., Jaya, I. & Wouthuyzen, S., 2015. Object-based Image Analysis for Coral Reef Benthic Habitat Mapping with Several Classification Algorithms. Procedia Environmental Sciences, 24, 222-227.
Welle, P.D., Small, M.J., Doney, S.C. & Azevedo, I.L., 2017. Estimating the effect of multiple environmental stressors on coral bleaching and mortality, PLoS ONE, 12(5), e0175018.
Wenger, A.S., Williamson, D.H., Silva, E.T. da, Ceccarelli, D.M., Browne, N.K., Petus, C. & Devlin, M.J., 2016. Effects of reduced water quality on coral reefs in and out of no-take marine reserves. Conservation Biology, 30(1), 142-153.
Williams, G.J., Smith, J.E., Conklin, E.J., Gove, J.M., Sala, E. & Sandin, S.A., 2013. Benthic communities at two remote pacific coral reefs: Effects of reef habitat, depth, and wave energy gradients on spatial patterns. PeerJ, 2013(1), e81. https://doi. org/10.7717/peerj.81.
Xin, L.H., Hyde, J., Cob, Z.C. & Adzis, K.A.A., 2013. Growth study of branching coral Acropora Formosa between natural reef habitats and in situ coral nurseries. AIP Conference Proceedings, 1571, 505-511.
Yusuf, Y., Affendi, Y.A. & Abdullah, R., 2009. Fishes of a ‘neglected’ coral reef area: Pulau Pangkor, Perak, 39-42. In: Hee et al. (Eds.), Proceeding of the Simposium Biologi Malaysia: Harnessing the potential of biodiversity. Faculty of Sciences, UPM,Serdang.
Zaki, N.H.M., Chong, W.S., Muslim, A.M., Reba, M.N.M. & Hossain, M.S., 2022. Assessing optimal UAV-data pre-processing workflows for quality ortho-image generation to support coral reef mapping. Geocarto International, 37(25). https://doi.org/10.1080/10106049.2022.2037732.
Zaneveld, J.R., Burkepile, D.E., Shantz, A.A., Pritchard, C.E., McMinds, R., Payet, J.P., Welsh, R., Correa, A.M.S., Lemoine, N.P., Rosales, S., Fuchs, C., Maynard, J.A. & Thurber, R.V., 2016. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nature Communications, 7, 1-12.
Manuscript received 1 December 2023;
Received in revised form 29 February 2024;
Accepted 25 October 2024
Available online 30 May 2025
https://doi.org/10.7186/bgsm79202502
0126-6187; 2637-109X / Published by the Geological Society of Malaysia.
© 2025 by the Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC-BY) License 4.0.