Bulletin of the Geological Society of Malaysia, Volume 80, November 2025, pp. 21 – 43
The properties and behaviours of unsaturated peat soil in Malaysia: A review
Maryam Moh’d Subhi Al Jaber, Nurmunira Muhammad*
Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Kampung Melayu Gambang, 26300 Kuantan, Pahang, Malaysia
*Corresponding author email address: muniramuhammad@umpsa.edu.my
Abstract: A detailed assessment of the properties and behaviour of unsaturated peat soils in Malaysia is presented, with a focus on their noteworthy attributes, including organic matter content of more than 75%, high moisture levels, low structural integrity, and high compressibility, ultimately resulting in substantial construction difficulties. The review assesses key characteristics of Malaysian peat soils, such as shear strength, unconfined compressive strength, specific gravity, moisture content, and compressibility, from the index properties perspective. The characteristics of Malaysia’s peat soils are comparable to those found in typical peat soils globally. A significant discovery is the strong correlation between high moisture levels and organic content, which is associated with low shear strength and specific gravity, and increased compressibility of the soil. This paper fills a substantial omission in the existing research on the behaviour of Malaysian peat in unsaturated environments. Studies revealed that peat soil is significantly impacted by seasonal fluctuations, particularly during periods of heavy rainfall, which lead to a substantial decrease in shear strength and an increase in water infiltration, resulting in settlement, deformation, and slope instability. As depth increases, hydraulic conductivity is reduced due to the growing complexity of the pore structure, thereby hindering water flow. The review significantly improves comprehension of peat soil behaviour under unsaturated conditions, yielding valuable information for the construction industry and policymakers.
Keywords: Peat soil, unsaturated conditions, moisture content, water table, bearing capacity
References
Abdel-Rahman, M., 2020. Review of Soil Improvement Techniques. In: Hany Shehata & Mona Badr (Eds.), Advancements in Geotechnical Engineering. Springer, Switzerland. 226 p. doi:10.1007/978-3-030-62908-3_14.
Abdulkareem, S., & Hassan, S., 2019. Organic and peat engineering properties, and their suitability for construction projects. International Journal of Integrated Engineering, 11(4), 1-10.
Adeke, P.T., Kanyi, I.M., & Olawuyi, M.Y., 2021. Correlation analysis of flexible road pavement surface condition and load bearing capacity of subgrade soil. Aksaray University Journal of Science and Engineering, 5(2), 65-77.
Al Jaber, M., Muhammad, N., & Selvaraj, J., 2024. Application of Industrial By-Product Waste as Soil Stabilising Backfill Material Using a Multi-Layering Method. Discover Civil Engineering, 1, 1–15.
Almsedeen, A., Muhammad, N., & Ishak, M.F., 2024. Preliminary strength characterization of peat soil stabilized with Mg-rich gypsum waste. AIP Conference Proceedings, 3014. doi:10.1063/5.0196830.
Almsedeen, A., Muhammad, N., & Ishak, M.F., 2022. Waste to Product: Potential of Mg-Rich Gypsum Additive for Improvement of Peat Soil. Green Materials and Electronic Packaging Interconnect Technology Symposium, Springer, 263–270.
Amir, A.G., Hamed, S., Soheil, S., & Amin, L., 2020. Bearing Capacity of Shallow Foundations on Unsaturated Soils: Analytical Approach with 3D Numerical Simulations and Experimental Validations. International Journal of Geomechanics, 20, 4019181. doi:10.1061/(ASCE)GM.1943- 5622.0001589.
Amiri, E., Emami, H., Mosaddeghi, M.R., & Astaraei, A.R., 2019. Shear strength of an unsaturated loam soil as affected by vetiver and polyacrylamide. Soil and Tillage Research, 194, 104331. doi: https://doi.org/10.1016/j.still.2019.104331.
Amuda, A., Hasan, A., Datu Unoi, D.N., & Linda, S., 2018. Strength and compressibility characteristics of amorphous tropical peat. Journal of GeoEngineering, 14(2), 85-96. doi:10.6310/ jog.201906_14(2).4.
Arisya, N., Kamaruzaman, F., Syamina, N., Shahrizan, A., Ahmad, A.F., Nooraiin, S., & Razali, M., 2022. Factor Influencing the Shear Strength Parameter. Multidisciplinary Applied Research and Innovation, 3, 169–183. https://doi.org/10.30880/ mari.2022.03.02.020.
Ashrafullah, S.M., 2023. Stability of dual porosity soil slope against rainfall-induced slope failure. MSc Eng. Thesis, Nazarbayev University, Kazakhstan.
ASTM, 2014. Standard Test Method for Laboratory Determination of the Fiber Content of Peat Samples by Dry Mass (ASTM D1997-25). ASTM International, West Conshohocken, PA.
ASTM, 2022. Standard Test Method for pH of Peat Materials (ASTM D2976-22). ASTM International, West Conshohocken, PA.
Azari, M., Billa, L., & Chan, A., 2022. Multi-temporal analysis of past and future land cover change in the highly urbanized state of Selangor, Malaysia. Ecological Processes, 11, article no 2. doi:10.1186/s13717-021-00350-0.
Basri, K.B., 2023. Dynamic Properties of Malaysian Peat Soil Based on Field Geophysical Methods. Doctoral thesis, Universiti Tun Hussein Onn Malaysia.
Basri, K., Zainorabidin, A., Abu Talib, M.K., & Wahab, N., 2021. Estimating the Small Strain Stiffness of Peat Soil Using Geophysical Methods. International Journal of Engineering Technology and Sciences, 7, 44–54. doi: 10.15282/ ijets.7.1.2020.1005.
Berbar, O., 2020. Deformation of Norwegian Peat. Master’s thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway. 159 p.
Bin Mohamad, H., James, S., Nor, S., Zakaria, F., Amaludin, A., Ngui, M.F.T., Tom, & Zainorabidin, A., 2023. Effect of Eco- Processed Pozzolan (EPP) Mixed with Calcium Oxide to Dry Density and Physicochemical of Peat Soil. Civil Engineering Journal, 9, 1697. doi:10.28991/CEJ-2023-09-07-011.
Bulliard, F., Lambot, S., & Henrion, M., 2024. Hydrogeophysical characterization and monitoring of a peatland in the Hautes Fagnes. Master’s thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgium. 88 p.
Chakraborty, A., & Sawant, V.A., 2022. Numerical Simulation of Earthen Embankment Resting on Liquefiable Soil and Remediation Using Stone Columns. International Journal of Geomechanics, 22, 4022205. doi:10.1061/(ASCE)GM.1943- 5622.0002559.
Che Mamat, R., & Ramli, A., 2023. Evolutionary polynomial regression for predicting the unconfined compressive strength of lime-stabilized. Suranaree J. Sci. Technol., 30(2), 010212(1-7).
Chmielewska, I., 2023. Effect of fibre content on the geotechnical properties of peat. Studia Geotechnica et Mechanica, 45, 133–143.
Dahan, O., 2020. Vadose Zone Monitoring as a Key to Groundwater Protection. Frontiers in Water, 2. doi:10.3389/ frwa.2020.599569.
Daud, M., Nazrin, M., Daud, N., & Norsyahariati, N., 2021. Compressibility Characteristics of Peat Soil Treated with MUF-P Resin. Solid State Phenomena, 317, 529–534.
Dettmann, U., Kraft, N., Rech, R., Heidkamp, A., & Tiemeyer, B., 2021. Analysis of peat soil organic carbon, total nitrogen, soil water content and basal respiration: Is there a “best” drying temperature? Geoderma, 403, 115231. doi:10.1016/j. geoderma.2021.115231.
Dhanai, P., Singh, V.P., & Soni, P., 2022. Rainfall triggered slope instability analysis with changing climate. Indian Geotechnical Journal, 52, 477–492.
Drobnik, J., & Stebel, A., 2020. Central European ethnomedical and officinal uses of peat, with special emphasis on the Tołpa peat preparation (TPP): An historical review. Journal of Ethnopharmacology, 246, 112248.
Duraisamy, Y., Sulaiman, A., & Othman, R., 2020. Ultimate bearing capacity of peat treated with cement columns in physical model. IOP Conference Series: Materials Science and Engineering, 712, 12043. doi:10.1088/1757-899X/712/1/012043.
Elangbam, T., & Kalita, A., 2024. Comparative Study of Different Stabilizers for Peat Soil Stabilization: A Review. In: Nehdi, M., Hung, M.K., Venkataramana, K., Antony, J., Kavitha, P.E., & Beena, B.R. (Eds.), Proceedings of SECON’23, Cham, Springer Nature, Switzerland, 377–391.
Ellithy, G., & Stark, T., 2020. Case Study: Unsaturated Embankment Failure on Soft Soils. Journal of Geotechnical and Geoenvironmental Engineering, 146, 5020011. doi:10.1061/ (ASCE)GT.1943-5606.0002382.
ElMouchi, A., Siddiqua, S., Wijewickreme, D., & Polinder, H., 2021. A Review to Develop New Correlations for Geotechnical Properties of Organic Soils. Geotechnical and Geological Engineering, 39, 3315–3336. doi:10.1007/s10706-021- 01723-0.
Engman, A., 2022. Quantification of peat volume change in Northern peatlands: A study of mires’ capacity to swell and shrink and its relation to mire age and land management. Master’s thesis, Umeå University, Umeå, Sweden. 64 p.
Eyo, E.U., Ng’ambi, S., & Abbey, S.J., 2022. An Overview of Soil–Water Characteristic Curves of Stabilised Soils and Their Influential Factors. Journal of King Saud University – Engineering Sciences, 34, 31–45. doi: 10.1016/j. jksues.2020.07.013.
Faloye, O.T., Ajayi, A.E., Zink, A., Fleige, H., Dörner, J., & Horn, R., 2021. Effective Stress and Pore Water Dynamics in Unsaturated Soils: Influence of Soil Compaction History and Soil Properties. Soil and Tillage Research, 211, 104997. doi: https://doi.org/10.1016/j.still.2021.104997.
Findlay, S.E., 2021. Organic matter decomposition. In: Kathleen C. Weathers, David L. Strayer & Gene E. Likens (Eds.), Fundamentals of Ecosystem Science. Academic Press. 326 p.
Firdaus, M.S., Gandaseca, S., Ahmed, O.H., & Majid, N.M., 2012. Comparison of Selected Physical Properties of Deep Peat Within Different Ages of Oil Palm Plantation. International Journal of Physical Sciences, 7, 5711–5716. doi:10.5897/IJPS12.441.
Fredlund, D., & Fredlund, M., 2020. Application of ‘Estimation Procedures’ in Unsaturated Soil Mechanics. Geosciences, 10, 364. doi:10.3390/geosciences10090364.
Gariano, S.L., & Guzzetti, F., 2016. Landslides in a changing climate. Earth-Science Reviews, 162, 227–252. doi:https:// doi.org/10.1016/j.earscirev.2016.08.011.
Gharedaghloo, B., & Price, J., 2017. Fate and Transport of Free-Phase and Dissolved-Phase Hydrocarbons in Peat and Peatlands: Developing a Conceptual Model. Environmental Reviews, 26(1), 55-68. doi:10.1139/er-2017-0002.
Girkin, N.T., Cooper, H.V., Ledger, M.J., O’Reilly, P., Thornton, S.A., Åkesson, C.M., Cole, L.E.S., Hapsari, K.A., Hawthorne, D., & Roucoux, K.H., 2022. Tropical peatlands in the Anthropocene: The Present and the Future. Anthropocene, 40, 100354.
Gowthaman, S., Nakashima, K., & Kawasaki, S., 2018. A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions. Materials, 11, 553.
Gratchev, I., Ravindran, S. (Ravi), & Jeng, D.-S., 2019. Analysis of Rainfall-Induced Landslides in Northern New South Wales, Australia. Australian Geomechanics Journal, 54, 83–97.
Gui, Y., Zhang, Q., Qin, X., & Wang, J., 2021. Influence of Organic Matter Content on Engineering Properties of Clays. Advances in Civil Engineering, 2021, 1–11. doi:10.1155/2021/6654121.
Hajon, S.K., Hasimah, M., Nurmaisarah, J. & Haniff, M.H., 2018. Classification of Tropical Peat in Malaysia. Oil Palm Bulletin, 76, 1-7. https://www.researchgate.net/publication/326786626.
Hedayati, M., Ahmed, A., Hossain, M., Hossain, J., & Sapkota, A., 2020. Evaluation and Comparison of In-Situ Soil Water Characteristics Curve with Laboratory SWCC Curve. Transportation Geotechnics, 23, 100351. doi:10.1016/j. trgeo.2020.100351.
Helsel, D.R., Hirsch, R.M., Ryberg, K.R., Archfield, S.A., & Gilroy, E.J., 2020. Statistical Methods in Water Resources Techniques and Methods 4 – A3. USGS Techniques and Methods, 458. https://pubs.er.usgs.gov/publication/tm4A3.
Hewitt, A.E., Balks, M.R., & Lowe, D.J., 2021. The Soils of Aotearoa New Zealand. Springer International Publishing, Cham. 332 p.
Holthusen, D., Batistão, A., & Reichert, J.M., 2020. Amplitude Sweep Tests to Comprehensively Characterize Soil Micromechanics: Brittle and Elastic Interparticle Bonds and Their Interference with Major Soil Aggregation Factors Organic Matter and Water Content. Rheologica Acta, 59, 545-563. doi:10.1007/ s00397-020-01219-3.
Huang, X., Horn, R., & Ren, T., 2022. Soil Structure Effects on Deformation, Pore Water Pressure, and Consequences for Air Permeability During Compaction and Subsequent Shearing. Geoderma, 406, 115452. doi: https://doi.org/10.1016/j. geoderma.2021.115452.
Huo, W., Zhang, W., Zhu, Z., & Peng, Y., 2021. Experimental and Numerical Simulation Study on Mechanical and Engineering Properties of Silt Roadbed Under Capillary Water. Bulletin of Engineering Geology and the Environment, 80, 1–19. doi:10.1007/s10064-021-02427-8.
Imran, U., Zaidi, A.Z., Ullah, A., Mahar, R.B., Khokhar, W.A., & Naeem, B., 2023. Surface Runoff Water Potential in the Ungauged Multi-Basin Manchar Lake of Pakistan. Sustainable Water Resources Management, 9, 180.
Irah, F.S.N., Jahara Matlan, S., Musa Mohamad, H., Alias, R., & Ibrahim, A., 2020. Study on Physical and Morphological Characteristics of Tropical Peat in Sabah. International Journal of Advanced Research in Engineering and Technology, 11, 542–553.
Jaafar, W.S.W.M., 2020. Carbon Emissions from Oil Palm Induced Forest and Peatland Conversion in Sabah and Sarawak, Malaysia. Forests, 11, 1–22. doi:10.3390/f11121285.
Jeffary, A.V., Ahmed, O.H., Heng, R.K.J., Choo, L.N.L.K., Omar, L., Musah, A.A., & Abdu, A., 2021. Nitrous Oxide Emissions in Pineapple Cultivation on a Tropical Peat Soil. Sustainability (Switzerland), 13(9), 4928. doi:10.3390/su13094928.
Jeremias, F.T., & Cripps, J., 2023. Laboratory Testing and Classification of Mudrocks: A Review. Geotechnics, 3, 781–807. doi:10.3390/geotechnics3030043.
Johari, A., Rahnema, H., Feilinejad, A., & Fotovvat, A., 2020. A Comparative Study in Reliability Analysis of Liquefaction Potential of Layered Soil. 1st International Conference on Civil Engineering, Architecture, Development and Reconstruction of Urban Infrastructure in IRAN. Tehran, March 2020.
Johnston, I., Murphy, W., & Holden, J., 2021. A Review of Floodwater Impacts on the Stability of Transportation Embankments. Earth- Science Reviews, 215, 103553. doi:https://doi.org/10.1016/j. earscirev.2021.103553.
Jones, L., Banks, V., & Jefferson, I., 2020. Swelling and Shrinking Soils. Geological Society, London, Engineering Geology Special Publications, 29, 223–242. doi:10.1144/EGSP29.8.
Kacimov, A.R., Obnosov, Y.V., & Šimůnek, J., 2020. Seepage to Ditches and Topographic Depressions in Saturated and Unsaturated Soils. Advances in Water Resources, 145, 103732. doi: https://doi.org/10.1016/j.advwatres.2020.103732.
Kamal, A.S.M., Hossain, F., Rahman, M., Ahmed, B., & Sammonds, P., 2022. Geological and Soil Engineering Properties of Shallow Landslides Occurring in the Kutupalong Rohingya Camp in Cox’s Bazar, Bangladesh. Landslides, 19, 465-478. doi:10.1007/s10346-021-01810-6.
Kämäräinen, A., Jokinen, K., & Lindén, L., 2020. Adding Sphagnum to Peat Growing Medium Improves Plant Performance Under Water Restricting Conditions. Mires and Peat, 26, Article 17.
Kamaruidzaman, N., Abu Talib, M.K., Alias, N., Zainorabidin, A., Madun, A., Abidin, H., & Dan Azlan, M., 2019. Peat Stabilization by Using Sugarcane Bagasse Ash (SCBA) as a Partial Cement Replacement Material. International Journal of Integrated Engineering, 11, 204-213. doi:10.30880/ ijie.2019.11.06.022.
Karumanchi, M., Avula, G., Pangi, R., & Sirigiri, S., 2020. Improvement of Consistency Limits, Specific Gravities, and Permeability Characteristics of Soft Soil with Nanomaterial: Nanoclay. Materials Today: Proceedings, 33, 232–238. doi: https://doi.org/10.1016/j.matpr.2020.03.832.
Kasbi, B., Musa, M.H., Baba, M., & Adnan, Z., 2021. Determining the Peat Soil Dynamic Properties Using Geophysical Methods. Magazine of Civil Engineering, 105(5), 10508.
Khalili, N., Leung, A., Farimah, M., Fernando, A., Romero, E., & Toll, D., 2022. State-of-the-Art Report: Advances in Unsaturated Soil Mechanics—Constitutive Modelling, Experimental Investigation, and Field Instrumentation. Proceedings of the 20th International Conference on Soil Mechanics and Geotechnical Engineering (ICSMGE 2022), Sydney, Australia, 297–348.
Khanday, S.A., Hussain, M. & Das, A.K., 2021. A Review on Chemical Stabilization of Peat. Geotechnical and Geological Engineering, 39(8), 5429–5443. https://doi.org/10.1007/ s10706-021-01857-1.
Kilpeläinen, J., Peltoniemi, K., Ojanen, P., Mäkiranta, P., Adamczyk, S., Domisch, T., Laiho, R., & Adamczyk, B., 2023. Waterlogging May Reduce Chemical Soil C Stabilization in Forested Peatlands. Soil Biology and Biochemistry, 187, 109229.
Kurnain, A., 2016. Inhibition of Phosphorus Adsorption to Goethite and Acid Soil by Organic Matter. International Journal of Soil Science, 11(3), 87-93.
Lahoori, M., Rosin-Paumier, S., & Masrouri, F., 2021. Thermo- Hydro-Mechanical Behavior of an Embankment Thermal Storage. Japanese Geotechnical Society Special Publication, 9, 429–434. doi:10.3208/jgssp.v09.cpeg057.
Larouci, A., Senhadji, Y., Laoufi, L., & Benazzouk, A., 2021. Dredged Dam Raw Sediments Geotechnical Characterization for Beneficial Use in Road Construction. International Journal of Engineering Research in Africa, 57, 81–98. doi:10.4028/ www.scientific.net/JERA.57.81.
Lawson, I., Honorio Coronado, E., Andueza, L., Cole, L., Dargie, G., Davies, A., Laurie, N., Okafor-Yarwood, I., Roucoux, K., & Simpson, M., 2022. The Vulnerability of Tropical Peatlands to Oil and Gas Exploration and Extraction. Progress in Environmental Geography, 1, 275396872211240. doi:10.1177/27539687221124046.
Ledger, M.J., Evans, C.D., Large, D.J., Evers, S., Brown, C., Jovani-Sancho, A.J., Callaghan, N., Vane, C.H.,Marshall, C., Baskaran, A., Gan, J.Y., Sowter, A., Morrison, K., & Sjögersten, S., 2023. Tropical Peat Surface Oscillations Are a Function of Peat Condition at North Selangor Peat Swamp Forest, Malaysia. Frontiers in Environmental Science, 11, 1–18. doi:10.3389/fenvs.2023.1182100.
Li, J., Bi, W., Yao, Y., & Liu, Z., 2023. State-of-the-Art Review of Utilization of Microbial-Induced Calcite Precipitation for Improving Moisture-Dependent Properties of Unsaturated Soils. Applied Sciences, 13, 2502. doi:10.3390/app13042502.
Li, Q., Wang, Y.M., Zhang, K.B., Yu, H., & Tao, Z.Y., 2020. Field Investigation and Numerical Study of a Siltstone Slope Instability Induced by Excavation and Rainfall. Landslides, 17, 1485–1499.
Liu, M.M., Hwang, S.H., & Kwon, H.J., 2020. Unique inducible filamentous motility identified in pathogenic Bacillus cereus group species. The ISME Journal, 14(12), 2997–3010. https:// doi.org/10.1038/s41396-020-0728-x.
Luo, P., & Ma, M., 2024. Failure Mechanisms and Protection Measures for Expansive Soil Slopes: A Review. Sustainability, 16, 5127.
Mahdiyasa, A.W., Large, D.J., Muljadi, B.P., & Icardi, M., 2023. Modelling the Influence of Mechanical-Ecohydrological Feedback on the Nonlinear Dynamics of Peatlands. Ecological Modelling, 478, 110299.
Mahmod, A.A.W., Mohd, S., Mohd Masirin, M.I., Tajudin, S.A.A., Bakar, I., Zainorabidin, A., Kifli, A.Z., & Hua, L.J., 2016. Construction of Buildings on Peat: Case Studies and Lessons Learned. MATEC Web of Conferences, 47, article no. 03013. doi:10.1051/matecconf/20164703013.
Mahmood, A.A., Hussain, M.K., & Mohamad, S.N.A., 2020. Use of Palm Oil Fuel Ash (POFA)-Stabilized Sarawak Peat Composite for Road Subbase. Materials Today: Proceedings, 20, 505–511. doi:https://doi.org/10.1016/j.matpr.2019.09.178.
Mahyan, N.R., Taib, S.N.L., Sa’Don, N.M., Truna, L., Ajon, V., & Midol, C.C., 2022. Strength Enhancement of Peat Stabilized with Rubber Chips. Journal of Engineering Science and Technology, 17, 3360–3377.
Makinda, J., Gungat, L., Rao, N.S.V., & Sulis, S., 2018. Compressibility Behaviour of Borneo Tropical Peat Stabilized with Lime-Sand Column. International Journal on Advanced Science, Engineering and Information Technology, 8, 172. doi:10.18517/ijaseit.8.1.4169.
Ma, S., Yao, Y., Bao, P., & Guo, C., 2023. Effects of Moisture Content on Strength and Compression Properties of Foundation Soils of Cultural Relics in Areas Flooded by the Yellow River. Frontiers in Materials, 10, 1–10. doi:10.3389/fmats.2023.1186750.
Mazlan, S.A., Abang Hasbollah, D.Z., Legiman, M.K.A., Mohd Taib, A., Ibrahim, A., Ramli, A.B., Jusoh, S.N., Abdul Rahman, N., Md Dan, M.F., & Zukri, A., 2023. Effectiveness of Coffee Husk Ash and Coconut Fiber in Improving Peat Properties. Physics and Chemistry of the Earth, Parts A/B/C, 130, 103361. doi:https://doi.org/10.1016/j.pce.2023.103361.
McCarter, C.P.R., Rezanezhad, F., Quinton, W.L., Gharedaghloo, B., Lennartz, B., Price, J., Connon, R., & Van Cappellen, P., 2020. Pore-Scale Controls on Hydrological and Geochemical Processes in Peat: Implications on Interacting Processes. Earth- Science Reviews, 207, 103227. doi:https://doi.org/10.1016/j. earscirev.2020.103227.
Md Isa, S.F., 2019. The effects of grass and rainfall pattern on the matric suction of acidic soil slopes. Doctoral dissertation, Universiti Tun Hussein Onn Malaysia. Retrieved from http:// eprints.uthm.edu.my/126/1/24p%20SITI%20FAZLINA%20 MD%20ISA.pdf.
Mohamad, H.M., Adnan, Z., & Hassan, N.A., 2022. Influence of Cyclic Loading to the Post-Cyclic Shear Strength Behaviour of Peat Soil. Journal of Engineering Science and Technology, 17, 2997–3011.
Mohamad, H.M., Zainorabidin, A., Musta, B., Mustafa, M.N., Amaludin, A.E., & Abdurahman, M.N., 2021. Compressibility Behaviour and Engineering Properties of North Borneo Peat Soil. Eurasian Journal of Soil Science, 10, 259–268.
Mohamad Tarmizi, M.Z., 2014. Peat Stabilization, Organic Geochemistry, and Related Palynological Characteristics of a Tropical Lowland Peat Basin in the Kota Samarahan-Asajaya Area, West Sarawak, Malaysia. Master’s thesis. Universiti Malaya, Kuala Lumpur, Malaysia.
Mohamed Jais, I., Che Lat, D., & Endut, T., 2019. Compressibility of Peat Soil Improved with Polyurethane. Malaysian Journal of Civil Engineering, 31(1), 35-41. doi:10.11113/mjce.v31n1.545.
Mohammadi, Z., & Hayley, J.L., 2024. Estimating Thaw Settlement of Highly Organic Permafrost. Proceedings of Geo-Congress 2024, Vancouver, BC, Canada. 780–790.
Mohd, O.E., Ismail, H.B., Rohaizi, M.J., Zuhairi, A.H., Tuan, R., Toh, C.T., Vincent, T.K., Abdul Hadi, A.A., Low, T.H., Adnan, Z., Noor, T., Norazzlina, M.S., & Vivi, A., 2019. Guidelines for Construction on Peat and Organic Soils in Malaysia. Construction Research Institute of Malaysia (CREAM), Kuala Lumpur, Malaysia. 154 p.
Mousavi, S., & Ghayoomi, M., 2021. Liquefaction Mitigation of Sands with Nonplastic Fines via Microbial-Induced Partial Saturation. Journal of Geotechnical and Geoenvironmental Engineering, 147, 4020156.
M.Sa’don, N., Abdul Karim, A.R., Taib, S.N.L., Muol, E., Yaw, B., & Ee, A., 2021. Sri Aman Peat: Settlement Observation and Geotechnical Properties Investigation. IOP Conference Series: Materials Science and Engineering, 1101, 12006. doi:10.1088/1757-899X/1101/1/012006.
Nababan, V.N.A., 2021. Consolidation Test on Peat Soil of Humbang Hasundutan Regency, North Sumatera Province. IOP Conference Series: Materials Science and Engineering, 1122, 12022.
Naseer, S., 2023. A study of rainfall infiltration on slope stability using sand piles to reinforce slopes. Master’s dessertation Nottingham Trent University, England. Retrieved from https:// irep.ntu.ac.uk/51885/1/Sohaib%20Naseer%202023.pdf.
Nazrien Ng, J., Mohd Taib, A., Razali, I.H., Abd Rahman, N., Wan Mohtar, W.H.M., A. Karim, O., Mat Desa, S., Awang, S., & Mohd, M.S.F., 2022. The Effect of Extreme Rainfall Events on Riverbank Slope Behaviour. Frontiers in Environmental Science, 10, 859427.
Nebeokike, U.C., Igwe, O., Egbueri, J.C., & Ifediegwu, S.I., 2020. Erodibility Characteristics and Slope Stability Analysis of Geological Units Prone to Erosion in Udi Area, Southeast Nigeria. Modeling Earth Systems and Environment, 6, 1061–1074. doi:10.1007/s40808-020-00741-w.
Niu, G., Kong, L., Miao, Y., Li, X., & Chen, F., 2023. A modified method for the Fredlund and Xing (FX) model of soil-water retention curves. Processes, 12(1), 50.
Nobahar, M., Khan, M., & Ivoke, J., 2020. Combined Effect of Rainfall and Shear Strength on the Stability of Highway Embankments Made of Yazoo Clay in Mississippi. Geotechnical and Geological Engineering, 38, 2787-2802. doi:10.1007s10706-020-01187-8.
Ogbuchukwu, P.O., Okeke, O.C., Ahiarakwem, C.A., & Ozotta, O.O., 2019. Geotechnical Properties of Expansive Soils in Awka and Environs, Southeastern Nigeria, in Relation to Engineering Problems. International Journal of Applied Science and Research, 2(4), 79–94.
Ojoawo, A.I., & Adagunodo, T.A., 2023. Groundwater Occurrence and Flow in Varying Geological Formations. IOP Conference Series: Earth and Environmental Science, 1197, 012009. doi:10.1088/1755-1315/1197/1/012009.
O’Kelly, B.C., 2016. Briefing: Atterberg Limits and Peat. Environmental Geotechnics, 3, 359–363. doi:10.1680/ envgeo.15.00003.
Panagea, I.S., Berti, A., Čermak, P., Diels, J., Elsen, A., Kusá, H., Piccoli, I., Poesen, J., Stoate, C., & Tits, M., 2021. Soil Water Retention as Affected by Management Induced Changes of Soil Organic Carbon: Analysis of Long-Term Experiments in Europe. Land, 10, 1362.
Pandya, S., & Sachan, A., 2020. Variation of Collapse Potential and Stiffness Degradation with Matric Suction of Compacted Unsaturated Cohesive Soil. International Journal of Geotechnical Engineering, 14, 35–48. doi:10.1080/193863 62.2017.1398368.
Park, I., Kang, C., & Bayat, A., 2022. Determination of Geotechnical Parameters for Underground Trenchless Construction Design. Bulletin of Engineering Geology and the Environment, 82, 9. doi:10.1007/s10064-022-03008-z.
Parra-Gómez, L., Muraro, S., & Jommi, C., 2023. An Insight into Drying-Wetting Cycles of Peat. E3S Web of Conferences, 382, 1005. doi:10.1051/e3sconf/202338201005.
Paul, A., & Hussain, M., 2020. Cement Stabilization of Indian Peat: An Experimental Investigation. Journal of Materials in Civil Engineering, 32, 4020350. doi:10.1061/(ASCE)MT.1943- 5533.0003363.
Paul, A., Hussain, M., & Ramu, B., 2018. The Physicochemical Properties and Microstructural Characteristics of Peat and Their Correlations: Reappraisal. International Journal of Geotechnical Engineering, 15, 1–12. doi:10.1080/1938636 2.2018.1483099.
Paul, A., Hussain, M., & Ramu, B., 2021. The Physicochemical Properties and Microstructural Characteristics of Peat and Their Correlations: Reappraisal. International Journal of Geotechnical Engineering, 15(6), 692–703.
Peng, B., Feng, R., Wu, L., & Shen, Y., 2021. Controlling Conditions of the One-Dimensional Consolidation Test on Peat Soil. Applied Sciences, 11, 11125. doi:10.3390/app112311125.
Pham, B.T., Nguyen, M.D., Ly, H.B., Pham, T.A., Hoang, V., Van Le, H., Le, T.T., Nguyen, H.Q., & Bui, G.L., 2020. Development of Artificial Neural Networks for Prediction of Compression Coefficient of Soft Soil. Lecture Notes in Civil Engineering, 54, 1167–1172. doi:10.1007/978-981-15-0802-8_187.
Pham, B.T., Nguyen, M.D., Nguyen-Thoi, T., Ho, L.S., Koopialipoor, M., Kim Quoc, N., Armaghani, D.J., & Le, H. Van, 2021. A Novel Approach for Classification of Soils Based on Laboratory Tests Using Adaboost, Tree, and ANN Modeling. Transportation Geotechnics, 27, 100508. doi:https://doi. org/10.1016/j.trgeo.2020.100508.
Pham, T., Sutman, M., & Medero, G., 2023. Validation, Reliability, and Performance of Shear Strength Models Combining Micromechanical Analysis for Unsaturated Soils. Geotechnical and Geological Engineering, 41(7), 4271-4309. doi:10.1007/ s10706-023-02520-7.
Radwan, M.K.H., Lee, F.W., Woon, Y.B., Yew, M.K., Mo, K.H., & Wai, S.H., 2021. A study of the strength performance of peat soil: A modified cement-based stabilization agent using fly ash and polypropylene fiber. Polymers, 13, 4059.
Raghunandan, M.E., & Sriraam, A.S., 2017. An overview of the basic engineering properties of Malaysian peats. Geoderma Regional, 11, 1–7. doi:https://doi.org/10.1016/j.geodrs.2017.08.003.
Rahardjo, H., Kim, Y., Gofar, N., Leong, E.C., Wang, C.L., & Wong, J.L.H., 2018. Field instrumentations and monitoring of GeoBarrier system for steep slope protection. Transportation Geotechnics, 16, 29–42. doi:https://doi.org/10.1016/j. trgeo.2018.06.006.
Rahardjo, H., Kim, Y., & Satyanaga, A., 2019. Role of unsaturated soil mechanics in geotechnical engineering. International Journal of Geo-Engineering, 10, 1–23. doi:10.1186/s40703-019-0104-8.
Rasheed, R.M., & Moghal, A.A.B., 2022. Critical appraisal of the behavioral geo-mechanisms of peats/organic soils. Arabian Journal of Geosciences, 15, 1123. doi:10.1007/s12517-022- 10396-9.
Rezanezhad, F., Price, J., Quinton, W., Lennartz, B., Milojevic, T., & Van Cappellen, P., 2016. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chemical Geology, 429, 75- 84. doi:10.1016/j.chemgeo.2016.03.010.
Rezanezhad, F., Quinton, W., Price, J., Elliot, T., Elrick, D., & Shook, K., 2010. Influence of pore size and geometry on peat unsaturated hydraulic conductivity computed from 3D computed tomography image analysis. Hydrological Processes, 24, 2983–2994. doi:10.1002/hyp.7709.
Rosly, M.H., Mohamad, H.M., Bolong, N., & Harith, N.S.H., 2022. An overview: Relationship of geological condition and rainfall with landslide events at East Malaysia. Trends in Sciences, 19, 3464.
Sa’don, N.M., Karim, A.R.A., Jaol, W., & Lili, W.H.W., 2014. Sarawak peat characteristics and heat treatment. UNIMAS e-Journal of Civil Engineering, 5(3), 6–12.
Sa’don, N.M., Karim, A.R.A., Taib, S.N.L., Muol, E.A., Yaw, B.L.J., & Ee, A., 2021. Sri Aman peat: Settlement observation and geotechnical properties investigation. IOP Conference Series: Materials Science and Engineering, 1101, 012006. doi:10.1088/1757-899x/1101/1/012006.
Saffaee, N.S., Siti, D., Ali, H., & Kifli, A.Z., 2023. Experimental study on physical properties of peat in Sibu, Sarawak. Borneo Journal of Sciences and Technology, 5, 65–74. doi:10.35370/ bjost.2023.5.1-08.
Saida, N.A., George, A.D., & Mohamad, H.M., 2023. A review on experimental investigations and geotechnical characteristics of peat soil stabilization. International Journal of Advanced Research in Engineering Innovation, 5(1), 1–19.
Sajarwan, A., Jaya, A., & Banuwa, I.S., 2021. Water retention and saturation degree of peat soil in Sebangau catchment area, Central Kalimantan. J. Trop. Soils, 26(1), 29-42.
Samuel, M.K., & Evers, S., 2024. Translocation of tropical peat surface to deeper soil horizons under compaction controls carbon emissions in the absence of groundwater. Frontiers in Soil Science, 4, 1259907.
Sapar, N.I.F., Matlan, S.J., Mohamad, H.M., Alias, R., & Ibrahim, A., 2020. A study on physical and morphological characteristics of tropical peat in Sabah. Int. J. Adv. Res. Eng. Technol., 11, 542–553.
Sate Ahmad, L., Haojie Alam, S., Günther, A., Jurasinski, G., & Lennartz, B., 2021. Meteorological controls on water table dynamics in fen peatlands depend on management regimes. Frontiers in Earth Science, 9, 630469. doi:10.3389/ feart.2021.630469.
Seidel, R., Dettmann, U., & Tiemeyer, B., 2023. Reviewing and analyzing shrinkage of peat and other organic soils in relation to selected soil properties. Vadose Zone Journal, 22(5), e20264. doi:10.1002/vzj2.20264.
Shah, A.S.N., Mustapha, K.A., & Hashim, R., 2020. Characterization and impact of peat fires on stabilization of tropical lowland peats in Banting, Selangor, Malaysia. Sains Malaysiana, 49, 471–481. doi:10.17576/jsm-2020-4903-02.
Sharma, A., & Shrivastava, N., 2023. Geotechnical characterization of construction and demolition waste material blended with sandy soil. International Journal of Geosynthetics and Ground Engineering, 9, 43. doi:10.1007/s40891-023-00458-7.
Simon, L., 2023. Mastering the underground: A comprehensive guide to soil consolidation and ground improvement techniques. Preprint, Engrxiv. doi:10.31224/3379. Available at: https:// engrxiv.org/preprint/view/3379.
Stachowicz, M., 2022. To store or to drain — To lose or to gain? Rewetting drained peatlands as a measure for increasing water storage in the transboundary Neman River Basin. Science of The Total Environment, 829, 154560. doi:https://doi.org/10.1016/j. scitotenv.2022.154560.
Stefanow, D., & Dudziński, P.A., 2021. Soil shear strength determination methods – State of the art. Soil and Tillage Research, 208, 104881. doi:https://doi.org/10.1016/j. still.2020.104881.
Stirling, E., Fitzpatrick, R.W., & Mosley, L.M., 2020. Drought effects on wet soils in inland wetlands and peatlands. Earth- Science Reviews, 210, 103387. doi:https://doi.org/10.1016/j. earscirev.2020.103387.
Sutejo, Y., Saggaff, A., & Rahayu, W., 2018. Characteristics of soil suction with filter paper test method. International Journal on Advanced Science, Engineering and Information Technology, 8, 2128–2134.
Sutejo, Y., Saggaff, A., & Rahayu, W., 2019. Laboratory investigation of the suction of peat soil in drying and wetting process. International Journal of Scientific and Technology Research, 8, 73–79.
Sutejo, Y., Saggaff, A., Rahayu, W., & Hanafiah, H., 2017. Physical and chemical characteristics of fibrous peat. AIP Conference Proceedings, 1903, 090006. doi:10.1063/1.5011609.
Szajdak, L.W., Jezierski, A., Wegner, K., Meysner, T., & Szczepański, M., 2020. Influence of drainage on peat organic matter: Implications for development, stability, and transformation. Molecules, 25, 2587.
Takahashi, H., Yamamoto, K., & Inoue, T., 2021. Principles of hydrological management of tropical peatland. In: M. Osaki, Nobuyuki Tsuji, Nazir Foead & Jack Rieley (Eds.), Tropical Peatland Eco-management. Springer, Singapore. 817 p.
Talib, F.M., Mohamad, H.M., & Mustafa, M.N., 2021. Peat soil improvement with bamboo reinforcement technology: A review. International Journal of GEOMATE, 21, 75–85. doi:10.21660/2021.88.j2259.
Tang, C.-S., Yin, L., Jiang, N., Zhu, C., Zeng, H., Li, H., & Shi, B., 2020. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: A review. Environmental Earth Sciences, 79, 94. doi:10.1007/s12665- 020-8840-9.
Teplitsky, Z., 2024. Assessing the impact of saline clay amendments for peat decomposition mitigation in drained dairy meadow peats. Minor Research Project Report. Utrecht University, Netherlands. 39 p.
United Nation Environmental Program (UNEP), 2022. Global Peatlands Assessment – The State of the World’s Peatlands: Evidence for action toward the conservation, restoration, and sustainable management of peatlands. Summary for Policy Makers. Global Peatlands Initiative. United Nations Environment Programme, Nairobi. 22 p.
Usowicz, B., & Lipiec, J., 2020. Spatial variability of saturated hydraulic conductivity and its links with other soil properties at the commune scale. Scientific Reports, 11(1), article no. 8293.
Veers, P., Dykes, K., Basu, S., Bianchini, A., Clifton, A., Green, P., Holttinen, H., Kitzing, L., Kosovic, B., Lundquist, J.K., Meyers, J., O’Malley, M., Shaw, W.J., & Straw, B., 2022. Grand Challenges: wind energy research needs for a global energy transition, Wind Energ. Sci., 7, 2491–2496, https://doi. org/10.5194/wes-7-2491-2022.
Verbeke, B.A., Lamit, L.J., Lilleskov, E.A., Hodgkins, S.B., Basiliko, N., Kane, E.S., et al., 2022. Latitude, elevation, and mean annual temperature predict peat organic matter chemistry at a global scale. Global Biogeochemical Cycles, 36, e2021GB007057. https://doi.org/10.1029/2021GB007057
Waddington, J., Morris, P., Kettridge, N., Granath, G., Thompson, D., & Moore, P., 2014. Hydrological feedbacks in northern peatlands. Ecohydrology, 8(1), 113-127. doi:10.1002/eco.1493.
Wahab, A., Embong, Z., Naseem, A.A., Tajudin, S.A.B.A., & Zaman, Q.U., 2020. Peat soil stabilization using electrokinetic stabilization (EKS) treatment at Parit Lapis Kadir, Batu Pahat, Johor, Malaysia. IOP Conference Series: Materials Science and Engineering, 785(1), 012013.
Wahab, A., Hassan, M., Din, Z.U., & Zaman, Q.U., 2021. Heavy metals concentration in undisturbed peat soil at Pekan District, Pahang, West Malaysia. Maejo International Journal of Energy and Environmental Communication, 3(2), 23–31.
Wahab, A., Zaidi, E., Abbas Ali, N., Aziman, M., Adnan, Z., & Vicky, K., 2018. The Effect of Electrokinetic Stabilization (EKS) on Peat Soil Properties at Parit Botak area, Batu Pahat, Johor, Malaysia. Indian Journal of Science and Technology, 11, 1–12. doi:10.17485/ijst/2018/v11i44/131658.
Wahab, N., Abu Talib, M.K., Latifah, N.J., Madun, A., & Pakir, F., 2023. Comparative study of peat properties in Johore, Malaysia. Asia-Pacific Journal of Science and Technology, 28, (04 SE-Research Articles), APST-28-04-15, 9 pages. https:// doi.org/10.14456/apst.2023.66.
Wahab, N., Khaidir Abu Talib, M., & Md Rohani, M., 2019. Guidelines for construction on peat and organic soils in Malaysia. International Journal of Civil Engineering and Technology, 10, 57.
Wahab, N., Talib, M.K.B.A., Xin, C.J., Basri, K., Leh, F.L.N., & Rashid, A.S.A., 2021. Performance of palm oil fuel ash (POFA) in peat soil stabilization. Malaysian Construction Research Journal, 13(2), 197–211.
Wahab, S., Hasan, M., Mohd Kusin, F., Embong, Z., Dar, Q.U.Z., Babar, Z., & Zaini, M., 2022. Physical properties of undisturbed tropical peat soil at Pekan District, Pahang, West Malaysia. International Journal of Integrated Engineering, 14(4), 403- 414. doi:10.30880/ijie.2022.14.04.031.
Wang, D., & Li, Z., 2023. Shear behaviour of peat at different stress levels. Proceedings of the Institution of Civil Engineers – Geotechnical Engineering, 177(1), 1–30. doi:10.1680/ jgeen.22.00058.
Wang, J.D., Li, P., Ma, Y., Vanapalli, S.K., & Wang, X.G., 2020. Change in pore-size distribution of collapsible loess due to loading and inundating. Acta Geotechnica, 15, 1081–1094. doi:10.1007/s11440-019-00815-9.
Warburton, J., 2020. Peat hazards: Compression and failure. Geological Society London Engineering Geology Special Publications, 29, 243–257. doi:10.1144/EGSP29.9.
Weghorst, M., 2022. Simulation of a column experiment on greenhouse gas emissions from peat and peat subsidence, using SWAP and DNDC. Masters thesis, Wageningen University. Retrieved from https://library.wur.nl/WebQuery/titel/2313121.
Wetlands International-Malaysia, 2010. A Quick Scan of Peatlands in Malaysia. Petaling Jaya, Malaysia: Wetlands International- Malaysia.
Word, C.S., McLaughlin, D.L., Strahm, B.D., Stewart, R.D., Varner, J.M., Wurster, F.C., Amestoy, T.J., & Link, N.T., 2022. Peatland drainage alters soil structure and water retention properties: Implications for ecosystem function and management. Hydrological Processes, 36, e14533.
Wu, S., Zhou, A., Shen, S.-L., & Kodikara, J., 2020. Influence of different strain rates on hydro-mechanical behaviour of reconstituted unsaturated soil. Acta Geotechnica, 15, 3415- 3431. https://doi.org/10.1007/s11440-020-01026-3.
Yacob, L.S., & Som, A.M., 2020. Stabilisation of peat soil using magnesium oxide: A preliminary study. Malaysian Journal of Analytical Sciences, 24, 578–586.
Yang, B., Luo, Y., Jeng, D., & Feng, J., 2019. Effects of moisture content on the dynamic response and failure mode of unsaturated soil slope subjected to seismic load. Bulletin of the Seismological Society of America, 109, 489-504. doi:10.1785/0120180222.
Yasin, M.Y., Abdullah, J., Noor, N.M., Yusoff, M.M., & Noor, N.M., 2022. Landsat observation of urban growth and land use change using NDVI and NDBI analysis. IOP Conference Series: Earth and Environmental Science, 1067. doi:10.1088/1755- 1315/1067/1/012037.
Yassin, R.R., Haji, S., & Muhammad, R.F., 2020. Mitigation of geohazard of carbonate karst features in construction sites by applying combined techniques in Kinta Valley, Perak- Peninsular Malaysia. International Journal of Engineering Research & Technology, 9, 2278–0181.
Ying, Z., Benahmed, N., Cui, Y.-J., & Duc, M., 2022. Wetting-drying cycle effect on the compressibility of lime-treated soil accounting for wetting fluid nature and aggregate size. Engineering Geology, 307, 106778. doi:https://doi. org/10.1016/j.enggeo.2022.106778.
Zainorabidin, A., & Bin Mohamad, H., 2015. Pre- and post-cyclic behavior on monotonic shear strength of Penor peat. Electronic Journal of Geotechnical Engineering, 20, 6927–6935.
Zainorabidin, A., & Bin Mohamad, H., 2017. Engineering properties of integrated tropical peat soil in Malaysia. Electronic Journal of Geotechnical Engineering, 22(2), 457–466.
Zainorabidin, A., & Mansor, H., 2016. Investigation on the shear strength characteristic at Malaysian peat. Journal of Engineering and Applied Sciences, 11, 1600–1606.
Zain, W.M., Idris, S.R.A., Ramsi, M.F.M., & Nordin, S.K., 2021. Analysing land-use land cover (LULC) and development change in nearby university campuses’ area: A case of Universiti Teknologi MARA Negeri Sembilan, Malaysia. Journal of Science and Technology, 13, 25–37.
Zanello, F., Teatini, P., Putti, M., & Gambolati, G., 2011. Long-term peatland subsidence: Experimental study and modeling scenarios in the Venice coastland. Journal of Geophysical Research, 116(F4). doi:10.1029/2011JF002010.
Zeng, L., Shao, L., Guo, X., & Niu, G., 2023. Physical meaning and mechanical effects of the neutral stress and effective stress in unsaturated soils. Acta Geotechnica, 18(5), 1537–1555. doi:10.1007/s11440-023-02127-5.
Zhang, H., Zhang, J., Zhang, Z., Zhang, M., & Cao, W., 2020. Variation behavior of pore-water pressure in warm frozen soil under load and its relation to deformation. Acta Geotechnica, 15, 603–614. doi:10.1007/s11440-018-0736-4.
Zhang, K., Zhang, Z., Li, Y., & Hu, Z., 2023. Experimental investigation on gas migration behaviour in unsaturated sand-clay mixture. Environmental Geotechnics, 12(1), 131–145.
Zhao, H., 2023. The effect of soil fabric on shrinkage behaviour and microstructure evolution of soft soils upon drying. Canadian Geotechnical Journal, 60(4), 438-452. doi:10.1139/cgj-2021-0421.
Zhao, H., & Jommi, C., 2022. Consequences of drying on the hydro-mechanical response of fibrous peats upon compression. Canadian Geotechnical Journal, 59(10), 1712-1727. doi:10.1139/cgj-2020-0086.
Manuscript received 20 August 2024;
Received in revised form 17 October 2024;
Accepted 14 January 2025
Available online 28 November 2025
https://doi.org/10.7186/bgsm80202503
0126-6187; 2637-109X / Published by the Geological Society of Malaysia.
© 2025 by the Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC-BY) License 4.0.