Rock slope assessment in tropical climates: A comparative study using multiple rock mass classification system

Cover-1
Author : Ahmad Faiz Salmanfarsi, Haryati Awang*
Publication : Bulletin of the Geological Society of Malaysia
Page : 59-81
Volume Number : 80
Year : 2025
DOI : https://doi.org/10.7186/bgsm80202505

Bulletin of the Geological Society of Malaysia, Volume 80, November 2025, pp. 59 – 81

Rock slope assessment in tropical climates: A comparative study using multiple rock mass classification system

Ahmad Faiz Salmanfarsi, Haryati Awang*

Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia

* Corresponding author email address: haryatiawang@umpsa.edu.my

Abstract: In tropical climates, exposed rock slopes are significantly weathered to form extensive weathering profiles. Combined with other factors such as slope orientation, discontinuities, and weather conditions, rock slope conditions need to be monitored for potential instability and failures. Rock mass classification is one of the most widely used empirical methods of classifying rock mass slope properties. Several rock mass classifications have been developed each year based on different rock mass parameters. This paper evaluated various cut rock slopes along Karak-Lanchang, Pahang, which showed potential failure zones from discontinuity sets and weathering zones, using selected rock mass classification systems. The rock slope mapping was carried out using conventional field mapping and Terrestrial Laser Scanning (TLS). Comparison between the mapped discontinuities and the discontinuities extracted from TLS revealed some degree of correlation. From the discontinuities mapping, kinematic analysis identified several potential slope failure modes. The stability conditions of the slopes were determined, and a comparative analysis of the different rock mass classifications was carried out. The paper highlights the significance of the classification results and discusses the contributing factors that affected the results of the various classifications. A more comprehensive classification of rock slopes is presented in this paper by comparing the results obtained from the different rock mass classifications.

Keywords: Rock mass classification, kinematic analysis, TLS, granite, engineering geology

References

Abdul Rahim, A.F., Md Rafek, A.G., Serasa, A.S., Jaapar, A.R., Goh, T.L., Roslee, R., Lee, K.E., Nguyen, X.H. & Tran, V.X., 2023. A Review of Rock Slope Stability Assessment Practice in Malaysia. Sains Malaysiana, 52(2), 399-416. DOI: 10.17576/ jsm-2023-5202-07.

Abdul Rahman, H. & Mapjabil, J., 2017. Landslides Disaster in Malaysia: An Overview. Health & the Environment Journal, 8(1), 58-71.

Alejano, L.R., Muralha, J., Ulusay, R., Li, C.C., Pérez‑Rey, I., Karakul, H., Chryssanthakis, P. & Aydan, Ö., 2018. ISRM Suggested Method for Determining the Basic Friction Angle of Planar Rock Surfaces by Means of Tilt Tests. Rock Mechanics and Rock Engineering, 51, 3853–3859. DOI: 10.1007/s00603-018-1627-6.

Anbazhagan, S., Ramesh, V. & Saranaathan, S.E., 2017. Cut slope stability assessment along ghat road section of Kolli hills, India. Natural Hazards, 86(3), 1081–1104. DOI: 10.1007/ s11069-016-2731-0.

Awang, H., Salmanfarsi, A.F., Misbahuddi, A. Z. & Ali, M. I., 2021a. Slope stability analysis of rock mass using Rock Mass Rating and Slope Mass Rating. IOP Conference Series: Earth and Environmental Science, 682, 012015. DOI: 10.1088/1755- 1315/682/1/012015.

Awang, H., Salmanfarsi, A.F., Zaini, M.S.I., Mohamad Yazid, M. A.F., & Ali, M.I., 2021b. Investigation of groundwater table under rock slope by using electrical resistivity imaging at Sri Jaya, Pahang, Malaysia. IOP Conference Series: Earth and Environmental Science, 682, 012017. DOI: 10.1088/1755- 1315/682/1/012017.

Bar, N. & Barton, N., 2017. The Q-Slope Method for Rock Slope Engineering. Rock Mechanics and Rock Engineering, 50(12), 3307–3322. DOI: 10.1007/s00603-017-1305-0.

Barton, N. & Bar, N., 2015. Introducing the Q-slope method and its intended use within civil and mining engineering projects. In: W. Schubert & A. Kluckner (Eds.), Future Development of Rock Mechanics: Proceedings of the ISRM Regional Symposium EUROCK 2015 & 64th Geomechanics Colloquium; October 7-10, 2015, Salzburg, Austria. Österreichische Gesellschaft für Geomechanik, Salzburg, 157–162.

Basahel, H. & Mitri, H., 2017. Application of rock mass classification systems to rock slope stability assessment: A case study. Journal of Rock Mechanics and Geotechnical Engineering, 9, 993–1009. DOI: 10.1016/j.jrmge.2017.07.007.

Battulwar, R., Zare-Naghadehi, M. Emami, E. & Sattarvand, J., 2021. A state-of-the-art review of automated extraction of rock mass discontinuity characteristics using three-dimensional surface models. Journal of Rock Mechanics and Geotechnical Engineering, 13(4), 920–936. DOI: 10.1016/j. jrmge.2021.01.008.

Bieniawski, Z.T., 1973. Engineering classification of jointed rock masses. Civil Engineer in South Africa, 15(12), 335-343.

Bieniawski, Z.T., 1976. Exploration for rock engineering. In: A.A. Balkema (Ed.), Proceedings of the Symposium on exploration for rock engineering, Cape Town, South Africa.

Bieniawski, Z.T., 1979. The geomechanics classification in rock engineering applications. Proceedings of the 4th International Congress on Rock Mechanics, Montreux, 41–48.

Bieniawski, Z.T., 1989. Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. John Wiley & Sons, New York. 250 p.

Bieniawski, Z.T., 1993. Classification of rock masses for engineering: The RMR system and future trends. In: Hudson, J.A. (Ed.), Comprehensive Rock Engineering, Vol. 3: Rock Testing and Site Characterization – Principles, Practice & Projects. Pergamon Press, New York, 553-573.

Bordehore, L.J., Riquelme, A., Cano, M. & Tomás, R., 2017. Comparing manual and remote sensing field discontinuity collection used in kinematic stability assessment of failed rock slopes. International Journal of Rock Mechanics and Mining Sciences, 97, 24-32. DOI: 10.1016/j.ijrmms.2017.06.004.

British Standards Institution, 2015. Code of Practice for Site Investigations. BS 5930: 2015+A1:2020. BSI, London. 328 p.

British Standards Institution, 2018. Geotechnical investigation and testing. Identification, description and classification of rock. Part 1: Identification and description. BS EN ISO 14689:2018. BSI, London. 28 p.

Celada, B., Tardáguila, I., Varona, P., Rodríguez, A. & Bieniawski, Z. T., 2014. Innovating tunnel design by an improved experience-based RMR system. In: A. Negro, M.O. Cecilio Jr. & W. Bilfinger (Eds.), Proceedings of the World Tunnel Congress. CBT/ABMS, Brazil, 1–9.

Cobbing, E.J., Pitfield, P.E.J., Darbyshire, D.P.F. & Mallick, D.I.J., 1992. The granites of the South-East Asian tin belt. HMSO, London. 369 p

Department of Statistics Malaysia, 2022. Environment Statistics 2022 Pahang. Department of Statistics Malaysia, Putrajaya. 90 p.

Fookes, P.G., 1997. Tropical Residual Soils. The Geological Society London, London. 184 p.

Gasparon, M. & Varne, R., 1995. Sumatran granitoids and their relationship to Southeast Asian terranes. Tectonophysics, 251, 277–299. DOI: 10.1016/0040-1951(95)00083-6.

Ghani, A.A., Shahjamal, M., Ng, T.F., Ismail, N.E.H., Mohamad Zulkifley, M.T, Islami, N., Quek, L.X., Abu Bakar, A.F., Hassan, M.H.A., Abdul Aziz, J.H. & Masor, A.F., 2019. Ce Anomaly in I‒Type Granitic Soil from Kuantan, Peninsular Malaysia: Retention of Zircon in the Weathering Product. Sains Malaysiana, 48(2), 309–315. DOI: 10.17576/jsm-2019- 4802-06.

Hack, R., Price, D. & Rengers, N., 2003. A new approach to rock slope stability-a probability classification (SSPC). Bulletin of Engineering Geology and the Environment, 62(2), 167-184. DOI: 10.1007/s10064-002-0155-4.

Hellmy, M.A.A., Muhammad, R. F., Shuib, M.K., Ng, T. F., Abdullah, W.H., Abu Bakar, A. & Kugler, R., 2019. Rock Slope Stability Analysis based on Terrestrial LiDAR on Karst Hills in Kinta Valley Geopark, Perak, Peninsular Malaysia. Sains Malaysiana, 48(11), 2595–2604. DOI: 10.17576/jsm-2019-4811-29.

Highland, L.M. & Bobrowsky, P., 2008. The landslide handbook—A guide to understanding landslides. United States Geological Survey, Reston. 147 p.

Hoek, E., 2007. Rock mass properties. Practical rock engineering. www.rocscience.com/learning/hoek-s-corner.

Hoek, E. & Bray, J.W., 1981. Rock Slope Engineering. Institute of Mining and Metallurgy, London. 456 p.

Hoek, E., Carter, T.G. & Diederichs, M.S., 2013. Quantification of the Geological Strength Index Chart. In: L.J. Pyrak-Nolte (Ed.), 47th US Rock Mechanics / Geomechanics Symposium, San Francisco, CA, USA, June 23-26. American Rock Mechanics Association, Virginia. 3116 p.

Hoek, E., Kaiser, P.K. & Bawden, W.F., 1995. Support of Underground Excavations in Hard Rock. Balkema, Rotterdam. 235 p.

Ismail, A., Ahmad Safuan, A.R., Sa’aari, R., Rasib, A.W., Mustaffar, M., Abdullah, R.A., Kassim, A., Mohd Yusof, N., Abd Rahaman, N. & Kalatehjari, R., 2022. Application of combined terrestrial laser scanning and unmanned aerial vehicle digital photogrammetry method in high rock slope stability analysis: A case study. Measurement, 195, 111161. DOI: 10.1016/j. measurement.2022.111161.

Jabatan Mineral dan Geosains, 2008. Assessment of the Seismic Threats to Malaysia from Major Earthquakes in the Southeast Asian Region: Seismic and Tsunami Hazards and Risks Study in Malaysia. Minerals and Geoscience Department, Kuala Lumpur. 122 p.

Khanna, R. & Dubey, R.K., 2021. Comparative assessment of slope stability along road-cuts through rock slope classification systems in Kullu Himalayas, Himachal Pradesh, India. Bulletin of Engineering Geology and the Environment, 80, 993–1017. DOI: 10.1007/s10064-020-02021-4.

Komoo, I., 1995. Weathering as an important factor in assessing engineering proper-ties of rock material. Forum on Soil and Rock Properties. Geological Society of Malaysia, Universiti Malaya, Kuala Lumpur, 31–35.

Kundu, J., Sarkar, K., Tripathy, A., & Singh, T. N., 2017. Qualitative stability assessment of cut slopes along the National Highway-05 around Jhakri area, Himachal Pradesh, India. Journal of Earth System Science, 126(8), 112. DOI: 10.1007/ s12040-017-0893-0.

Nagendran, S.K., Mohamad Ismail, M.A. & Wen, Y. ., 2019. 2D And 3D Rock Slope Stability Assessment Using Limit Equilibrium Method Incorporating Photogrammetry Technique. Bulletin of the Geological Society of Malaysia, 68, 133–139. DOI: 10.7186/bgsm68201913.

Nugraheni, R.D., Sunjaya, D. & Agustini, S., 2018. Regional tectonic and geochemical approach to distinguish bauxite characteristics in Pahang, Malaysia and West Kalimantan, Indonesia. IOP Conference Series: Earth and Environmental Science, 212, 012026. DOI: 10.1088/1755-1315/212/1/012026.

Pantelidis, L., 2009. Rock slope stability assessment through rock mass classification systems. International Journal of Rock Mechanics and Mining Sciences, 46(2), 315-325. DOI: 10.1016/j.ijrmms.2008.06.003.

Pantelidis, L., 2010. An alternative rock mass classification system for rock slopes. Bulletin of Engineering Geology and the Environment, 69(1), 29-39. DOI: 10.1007/s10064-009-0241-y.

Papathanassiou, G., Riquelme, A., Tzevelekis, T. & Evaggelou, E., 2020. Rock Mass Characterization of Karstified Marbles and Evaluation of Rockfall Potential Based on Traditional and SfM-Based Methods; Case Study of Nestos, Greece. Geosciences, 10(10), 389. DOI: 10.3390/geosciences10100389.

Price, N. J. & Cosgrove, J.W., 1990. Analysis of geological structures. Cambridge University Press, Cambridge. 502 p.

Public Work Department, 2009. National Slope Master Plan Sectoral Report Research and Development. Jabatan Kerja Raya Malaysia, Kuala Lumpur.

Riquelme, A.J., Abellán, A., Tomás, R. & Jaboyedoff, M., 2014. A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Computers & Geosciences, 68, 38-52. DOI: 10.1016/j.cageo.2014.03.014.

Riquelme, A., Tomás, R. & Abellán, A., 2016. Characterization of rock slopes through slope mass rating using 3D point clouds. International Journal of Rock Mechanics and Mining Sciences, 84, 165–176. DOI: 10.1016/j.ijrmms.2015.12.008.

Rocscience Inc., 2014. Dip v. 6.0 – graphical and statistical analysis of orientation data. Toronto, Canada.

Romana, M., 1985. New adjustment ratings for application of Bieniawski classification to slopes. Proceedings of International Symposium on the Role of Rock Mechanism, Zacatecas, 49-53.

Romana, M., Tomás, R. & Serón, J.B., 2015. Slope Mass Rating (SMR) geomechanics classification: thirty years review. 13th ISRM International Congress of Rock Mechanics, 10-13 May, Montreal, Canada.

Roslan, R., Che Omar, R., Baharuddin, I.N.Z., Abdul Wahab, W. & Buslima, F.S., 2019. Discontinuity Mapping using Terrestrial Laser Scanner and Kinematic Method. International Journal of Engineering and Advanced Technology, 9(1), 3640– 3644. DOI: 10.35940/ijeat.A2704.109119.

Sardana, S., Verma, A.K., Singh, A. & Laldinpuia, 2019. Comparative analysis of rockmass characterization techniques for the stability prediction of road cut slopes along NH-44A, Mizoram, India. Bulletin of Engineering Geology and the Environment, 78(8), 5977–5989. DOI: 10.1007/s10064- 019-01493-3.

Schwartz, M.O., Rajah, S.S., Askury, A.K., Putthapiban, P. & Djaswadi, S., 1995. The Southeast Asian Tin Belt. Earth Science Reviews, 38, 95-293. DOI: 10.1016/0012-8252(95)00004-T.

Şen, Z. & Sadagah, B.H., 2003. Modified rock mass classification system by continuous rating. Engineering Geology, 67(3-4), 269-280. DOI: 10.1016/S0013-7952(02)00185-0.

Simon, N., Mat Akhir, J., Napiah, A. & Tan, H.K., 2008. Development of landslide database along km 160 – km 190, East Coast Highway, Pahang. Warta Geologi, 34 (5&6), 233–238.

Sonmez, H. & Ulusay, R., 2002. A discussion on the Hoek-Brown failure criterion and suggested modifications to the criterion verified by slope stability case studies. Yerbilimleri, 26, 77–99.

Sturzenegger, M. & Stead, D., 2009. Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Engineering Geology, 106(3-4), 163-182. DOI: 10.1016/j. enggeo.2009.03.004.

Taheri, A. & Tani. K., 2010. Assessment of the slope stability of rock slopes by slope stability rating classification system. Rock Mechanics and Rock Engineering, 43(3), 321–333. DOI: 10.1007/s00603-009-0050-4.

Tan, B.K., 2017. Engineering geology in Malaysia – some case studies. Bulletin of the Geological Society of Malaysia, 64, 65–79. DOI: 10.7186/bgsm64201707.

Tan, H.K., Mat Akhir, J., Napiah, A. & Simon, N., 2008. Pemetaan ramalan potensi tanah runtuh di sepanjang km160-190 Lebuhraya Pantai Timur dengan pendekatan Sistem Maklumat Geografi: Kaedah statistik. Warta Geologi, 34 (5&6), 239–242.

Tate, R.B., Tan, D.N.K. & Ng, T.F., 2008. Geological Map of Peninsular Malaysia. Scale 1:1 000 000. Geological Society of Malaysia & University Malaya.

Tomás, R., Delgado, J. & Seron, J.B., 2007. Modification of slope mass rating (SMR) by continuous functions. International Journal of Rock Mechanics and Mining Sciences, 44(7), 1062- 1-69. DOI: 10.1016/j.ijrmms.2007.02.004.

Tomás, R., Valdes-Abellan, J., Tenza-Abril, A.J. & Cano, M., 2012. New insight into the slope mass rating geomechanical classification through four-dimensional visualization. International Journal of Rock Mechanics and Mining Sciences, 53, 64-69. DOI: 10.1016/j.ijrmms.2012.04.002.

Ulusay, R., 2015. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014. Springer International Publishing, Switzerland. 293 p.

Ulusay, R. & Hudson, J.A., 2007. The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006. International Society of Rock Mechanics Commission on Testing Methods, 2007, Ankara. 628 p.

Zaini, M.S.I., Hasan, M., & Zolkepli, M.F., 2022. Urban landfills investigation for leachate assessment using electrical resistivity imaging in Johor, Malaysia. Environmental Challenges, 6, 100415. DOI: 10.1016/j.envc.2021.100415.

Manuscript received 13 June 2024;
Received in revised form 22 September 2024;
Accepted 20 February 2025
Available online 28 November 2025

https://doi.org/10.7186/bgsm80202505

0126-6187; 2637-109X / Published by the Geological Society of Malaysia.
© 2025 by the Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC-BY) License 4.0.