Facies and biofacies of the Late Quaternary deposits at west Johor, Malaysia: Indicators for sea-level changes, palaeoshoreline, and palaeonvironment

bgsm742022
Author : Abdul Hadi Hashim, Habibah Jamil, Ramlan Omar
Publication : Bulletin of the Geological Society of Malaysia
Page : 85 - 110
Volume Number : 74
Year : 2022
DOI : doi.org/10.7186/bgsm74202206

Bulletin of the Geological Society of Malaysia, Volume 74, November 2022, pp. 85 – 110

 

Facies and biofacies of the Late Quaternary deposits at west Johor, Malaysia: Indicators for sea-level changes, palaeoshoreline, and palaeonvironment

 

Abdul Hadi Hashim1,*, Habibah Jamil1, Ramlan Omar2

1 Geology Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

2 School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

* Corresponding author email address: a.hadi.hashim@gmail.com

 

Abstract: In this study, sedimentological and foraminiferal analyses were conducted on two borehole samples (BH1 = 42 m and BH2 = 39 m) at Pontian in west Johor, Peninsular Malaysia. The sedimentological description established ten facies (A to J). They comprised three associations and two sedimentary environments (i.e., estuary and delta plain). The foraminiferal analysis identified four distinct biofacies through similarity plots of taxonomic compositions and their respective groups for each borehole. Each group was designated as Biofacies Ia to Id for BH1 and IIa to IId for BH2. The deposition began with the formation of a small tidal-dominated estuarine basin in the flooded palaeovalley and the subsequent development of a peat-forming estuarine channel that resulted from the flooding of a supratidal zone. Relative sea-level changes were assumed localised to a basin scale. The maximum limit of tidal influence was benchmarked using a mangrove classification for a terrestrial boundary. Based on the foraminiferal analysis, this study identified a few episodes of flooding events, implying the occurrence of several migrations of the paleoshoreline throughout the sequence that traced the configuration of the maximum paleoshoreline.

 

Keywords: Biofacies, foraminifera, paleoshoreline, Pontian, Quaternary, sea-level changes

  

Abstrak: Dalam kajian ini, analisis sedimentologi dan foraminifera telah dijalankan ke atas dua teras gerudi (BH1 =42 m dan BH2 = 39 meter) yang diperolehi dari Pontian di barat Johor, Semenanjung Malaysia. Dalam pemerihalan sedimentologi, sepuluh fasies enapan (A sehingga J) telah dikenalpasti dan dikelaskan kepada tiga sekutuan fasies yang mewakili sekitaran enapan berbeza (estuari dan dataran delta). Dalam analisis foraminifera, empat biofasies telah dikenalpasti melalui plot kesamaan komposisi taksonomi dan juga melalui kumpulan masing-masing untuk setiap teras gerudi tersebut. Setiap kumpulan telah dinamakan sebagai Biofasies Ia sehingga Id untuk BH1 dan IIa sehingga IId untuk BH2. Proses pengenapan ini ditafsirkan
bermula dengan pembentukan lembangan estuari kecil yang didominasi pasang-surut. Ia terletak dalam lembah kuno banjir lalu membentuk alur estuari yang menghasilkan enapan gambut akibat kebanjiran zon supra pasang-surut. Perubahan aras laut relatif telah dianggarkan berlaku pada skala lembangan setempat. Had maksimum pengaruh pasang-surut telah ditentukan dengan menggunakan pengkelasan paya bakau untuk menentukan sempadan daratan. Berdasarkan analisis foraminifera, kajian ini telah dapat mengenalpasti beberapa episod kejadian banjir. Ini menandakan berlakunya beberapa migrasi garis laut kuno di sepanjang jujukan ini seterusnya menunjukkan konfigurasi garis laut kuno yang maksimum.

 

Kata kunci: Biofasies, foraminifera, pesisir laut kuno, Pontian, Kuaterner, perubahan aras laut

 

References

Abdullah, S., Kamaludin, B.H., & Tjia, H.D., 2003. The Holocene
optimum in Malaysia. Minerals and Geoscience Department Malaysia Technical
Papers, 2, 37–67.

Abouelresh, M., & Slatt, R. 2011. Shale depositional processes:
Example from the Paleozoic Barnett Shale, Fort Worth Basin, Texas, USA. Open
Geosciences, 3(4), 398-409.

Ali, T.A., 2010. Analysis of shoreline-changes based on the
geometric representation of the shorelines in the GIS database. Journal of
Geography and Geospatial Information Science, 1(1), 1-16.

Amorosi, A.,Bruno, L., Cleveland, D., Morelli, A., & Hong, W.,
2016. Paleosols and associated channel-belt sand bodies from a continuously
subsiding late Quaternary system (Po Basin, Italy): New insights into
continental sequence stratigraphy. Geological Society of America Bulletin, 129,
B31575.1.

Azmi, M.Y., & Kamaludin, H., 1997. Palynology of late Quaternary
coastal sediments, Perak, Malaysia. Catena, 30, 391-406.

Barnett, E.J., & Harvey, N., 2001. Relative sea-level change and
geologic corrections to South Australian tide gauge records. In: Noye, B.J.,
& Grzechnik, M.P. (Eds.), Sea-level changes and their effects. Ocean and
Atmosphere Pacific: OAP95. World Scientific Publishing Co., Singapore, 95–124.

Bird, M.I., Taylor, D., & Hunt, C., 2005. Palaeoenvironments of
insular Southeast Asia during the Last Glacial Period: A savanna corridor in
Sundaland? Quaternary Science Reviews, 24, 2228–2242.

Bird, M.I., Fifield, L.K., Teh, T.S., Chang, C.H., Shirlaw, N.,
& Lambeck, K., 2007. An inflection in the rate of early mid-Holocene
eustatic sea-level rise: A new sea-level curve from Singapore. Estuarine,
Coastal and Shelf Science, 71, 523–536.

Bird, M.I., Austin, W.E.N., Wurster, C.M., Fifield, L.K., Mojtahid,
M., & Sargeant, C., 2010. Punctuated eustatic sea-level rise in the early
mid-Holocene. Geology, 38, 803–806.

Biswas, B., 1973. Quaternary changes in sea-level in the South China
Sea. Bulletin of the Geological Society of Malaysia, 6, 229 – 256.

Blum, M., Martin, J., Milliken, K., & Garvin, M., 2013.
Paleovalley systems: Insights from Quaternary analogs and experiments. Earth-Science
Reviews, 116, 128–169.

Bosch, J.H.A., 1988. The Quaternary deposits in the coastal plains
of Peninsular Malaysia. Geological Survey Malaysia Quaternary Geology Report
1/86.

Bosch, J.H.A., 1989. Quaternary geologic map of Peninsular Malaysia.
Geological Survey of Malaysia Publication.

Catuneanu, O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple,
R.W., Eriksson, P.G., Fielding, C.R., Fisher, W.L., Galloway, W.E., Gibling,
M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.St.C., Macurda, B.,
Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier,
H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A.,
Tucker, M.E., & Winker, C., 2009. Towards the standardization of sequence
stratigraphy. Earth-Science Reviews, 92 (1–2), 1-33.

Che Aziz, A., 2002. Sedimentary sequence in the subsurface of the Pekan
coastal plain, Pahang. Proceedings of the Geological Society of Malaysia Annual
Geological Conference 2002.

Chen, S., Steel, R.J., & Olariu, C., 2015. Paleo-Orinoco
(Pliocene) channels on the tide-dominated Morne L’Enfer delta lobes and
estuaries, SW Trinidad. In: Ash-worth, P.J., Best, J.L., & Parsons, D.R.
(Eds.), Fluvial-tidal sedimentology. Developments in Sedimentology, 68,
227–281.

Clayton, J.A., & Pitlick, J., 2008. Persistence of the surface
texture of a gravel‐bed river during a large flood. Earth Surface
Processes and Landforms, 33(5), 661-673.

Crucifix, M., Braconnot, P., Harrison, S.P., &
Otto‐Bliesner B., 2005. Second phase of paleoclimate modelling
intercomparison project, Eos Trans. AGU, 86, 264.

Culver, S., Mallinson, D., Corbett, D., Leorri, E., Rouf, A.,
Shazili, N.A.M., Yaacob, R., Whittaker, J., Buzas, M., & Parham, P., 2012.
Distribution of foraminifera in the Setiu estuary and lagoon, Terengganu,
Malaysia. The Journal of Foraminiferal Research, 42, 109-133.

Daidu, F., Wang, Y., & Liu, M., 2013. Classifications,
sedimentary features and facies associations of tidal flats. Journal of
Palaeogeography, 2(1), 66-80.

Dalrymple, R.W., 2022. A review of the morphology, physical processes
and deposits of modern straits. Geological Society London Special Publications,
523(1), SP523-2021.

Dalrymple, R.W., Knight R.J., Zaitlin B.A., & Middleton G.V., 1990.
Dynamics and facies model of a macrotidal sand bar complex. Sedimentology, 35,
577–612.

Dalrymple, R.W., Baker, E.K., Harris, P.T., & Hughes, M.G., 2003.
Sedimentology and stratigraphy of a tide-dominated, foreland-basin delta (Fly
River, Papua New Guinea). In: Sidi, F.H., Nummedal, D., Imbert, P., Darman, H.,
& Posamentier, H.W. (Eds.), Tropical deltas of Southeast
Asia-Sedimentology, Stratigraphy, and Petroleum Geology. Society for
Sedimentary Geology (SEPM) Special Publication, 76, 147–173.

Dalrymple, R.W., 2006. Incised valleys in space and time: An introduction
to the volume and an examination of the controls on valley formation and
filling. In: Dalrymple, R.W., Leckie, D.A., & Tillman R.W. (Eds.), Incised
valleys in space and time. SEPM Society for Sedimentary Geology Special
Publication, 85, 5–12.

Dalrymple, R.W., Mackay, D.A., Ichaso, A.A., & Choi, K.S., 2012.
Processes, morphodynamics, and facies of tide-dominated estuaries. In: Davis,
R.A., Jr., & Dalrymple, R.W. (Eds.), Principles of tidal sedimentology.
Springer, New York. 621 p.

Davis, J.H.,1940. The ecology and geologic role of mangroves in Florida.
Carnegie Institution of Washington Pub., 32, 305–412.

Davis, R.A. Jr., & FitzGerald, D.M., 2009. Beaches and coasts. John
Wiley & Sons, Malden, MA. 432 p.

Demicco, R.V., & Gierlowski-Kordesch, E.H., 1986. Facies
sequences of a semi-arid closed basin; the Lower Jurassic East Berlin Formation
of the Hartford Basin, New England, U.S.A. Sedimentology, 33, 107–118.

Diessel, C.F.K., 1992. Coal-bearing depositional systems. Springer,
Berlin, Germany. 721 p.

Dietrich, W.E., & Smith, J.D., 1984. Bed load transport in a
river meander. Water Resources Research, 20(10), 1355– 1380.

Dowsett, H., Dolan, A., Rowley, D., Moucha, R., Forte, A.M., Mitrovica,
J.X., Pound, M., Salzmann, U., Robinson, M., Chandler, M., Foley, K., &
Haywood, A., 2016. The PRISM4 (mid-Piacenzian) paleoenvironmental
reconstruction. Climate of the Past, 12, 1519–1538.

Freytet, P., & Verrecchia, E.P., 2002. Lacustrine and palustrine
carbonate petrography: An overview. Journal of Paleolimnology, 27(2), 221-237.

Fujimoto, K., Miyagi, T., Kikuchi, T., & Kawana. T., 1996.
Mangrove habitat formation and response to Holocene sea-level changes on Kosrae
Island. Micronesia Mangrove Salt Marshes, 1, 47–57.

Fujimoto, K., Miyagi, T., Murofushi, T., Mochida, Y., Umitsu, M.,
Adachi, H., & Pramojanee, P., 1999a. Mangrove habitat dynamics and Holocene
Sea-level changes in the southwestern coast of Thailand. Tropics, 8, 239–255.

Fujimoto, K., Miura, M., Kobayashi, S., & Simbolon, H., 2019. Habitat
evolution of a peat swamp forest and belowground carbon sequestration during
the Holocene along the coastal lowland in Central Sumatra, Indonesia. Progress
in Earth and Planetary Science, 6(1), 1-13.

Freytet, P., & Verrecchia, E.P., 2002. Lacustrine and palustrine
carbonate petrography: An overview. Journal of Paleolimnology, 27(2), 221-237.

Gallop, S.L., Kennedy, D.M., Loureiro, C., Naylor, L.A.,
Muñoz-Pérez, J.J., Jackson, D.W., & Fellowes, T.E., 2020. Geologically
controlled sandy beaches: Their geomorphology, morphodynamics and
classification. Science of the Total Environment, 139123.

Genchi, S.A., Vitale, A.J., Perillo, G.M.E., Seitz, C., &
Delrieux, C.A., 2020. Mapping topobathymetry in a shallow tidal environment
using low-cost technology. Remote Sens., 12, 1394.

Geng, L., Gong, Z., Zhou, Z., Lanzoni, S., & D’Alpaos, A., 2020.
Assessing the relative contributions of the flood tide and the ebb tide to
tidal channel network dynamics. Earth Surface Processes and Landforms, 45(1),
237-250.

Geyh, M.A., Kudrass, H.R., & Streif, H., 1979. Sea-level changes
during the late Pleistocene and Holocene in the Strait of Malacca. Nature, 278,
441–443.

Goddéris, Y., Donnadieu, Y., Le, Hir. G., & Lefebvre, V., 2014.
The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and
climate. Earth-Science Reviews, 128, 122–138.

Goñi, M.A., Teixeira, M.J., & Perkey, D.W., 2003. Sources and distribution
of organic matter in a river-dominated estuary (Winyah Bay, SC, USA).
Estuarine, Coastal and Shelf Science, 57(5-6), 1023-1048.

Golonka, J., Ross, M.I., & Scotese, C.R., 1994. Phanerozoic
paleogeographic and paleoclimatic modeling maps. In: Embry, A.F., Beauchamp,
B., & Glass, D.J. (Eds.), Pangea: Global environment and resources.
Memoir-Canadian Society of Petroleum Geologists, 17, 1–47.

Gray, L.M., Basir J., & Tjia, H.D., 1978. Fossils at Sri Medan, Johor.
Warta Geologi, 4, 81-84.

Gustavson, T.C., 1991. Arid basin depositional systems and
paleosols: Fort Hancock and Camp Rice Formations (Pliocene-Pleistocene), Hueco
Bolson, West Texas and Adjacent Mexico. The University of Texas at Austin,
Bureau of Economic Geology, Report of Investigations No. 198, 49 p.

Hall, R., van Hattum, M.W.A., & Spakman, W., 2008. Impact of
India–Asia collision on SE Asia: The record in Borneo. Tectonophysics, 451,
366–389.

Hall, R., 2014. The origin of Sundaland. Proceedings of Sundaland Resources
2014. MGEI Annual Convention, 17-18 November 2014, Palembang, South Sumatra,
Indonesia.

Hammer, O., Harper, D.A.T., & Ryan, P.D., 2001. PAST: paleontological
statistics software package for education and data analysis. Palaeontologia
Electronica, 4(1), 1–9.

Hanebuth, T., Stattegger, K., & Grootes, P.M., 2000. Rapid
flooding of the Sunda Shelf: A late-glacial sea-level record. Science, 288, 1033–1035.

Hanebuth, T.J.J., Stattegger, K., & Saito, Y., 2002. The
stratigraphic architecture of the central Sunda Shelf (SE Asia) recorded by shallow-seismic
surveying. Geo-Marine Letters, 22, 86-94.

Hanebuth, T.J.J., & Stattegger, K., 2004. Depositional sequences
on a late Pleistocene–Holocene tropical siliciclastic shelf (Sunda Shelf,
southeast Asia). Journal of Asian Earth Sciences, 23, 113-126.

Hanebuth, T.J.J., Voris, H.K., Yokoyama, Y., Saito, Y., & Okuno,
J., 2011. Formation and fate of sedimentary depocentres on Southeast Asia’s
Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth
Science Reviews, 104, 92-110.

Hashim, A.H., Jamil, H., & Omar, R., 2022. Clay minerals and
their implications for Late Quaternary palaeoclimate investigation: A case
study in Pontian, Johor. Bulletin of the Geological Society of Malaysia, 73,
91-103.

Hasmadi, I.M., Pakhriazad, H.Z., & Norlida, K., 2011. Remote sensing
for mapping RAMSAR heritage site at Sungai Pulai Mangrove Forest Reserve, Johor,
Malaysia. Sains Malaysiana, 40(2), 83-88.

Heaney, L.R., 1991. A synopsis of climatic and vegetational change in
southeast Asia. Climatic Change, 19, 53–61.

Hesp, P.A., Hung, C.C., Hilton, M., Ming, C.L., & Turner, I.M., 1998.
A first tentative Holocene sea-level curve for Singapore. Journal of Coastal
Research, 14, 308–314.

Holbrook, J.M., & Bhattacharya, J.P., 2012. Reappraisal of the sequence
boundary in time and space: Case and considerations for an SU (subaerial
unconformity) that is not a sediment bypass surface, a time barrier, or an
unconformity. Earth-Science Reviews, 113, 271–302.

Horton, B.P., Benjamin, P., Gibbard, L.G., Milne, M., Morley, R.J.,
Purintavaragul, C., & Stargardt, J.M., 2005. Holocene sea levels and
palaeoenvironments, Malay-Thai Peninsula, Southeast Asia. The Holocene, 15,
1199-1213.

Ichaso, A.A., & Dalrymple, R.W., 2009. Tide- and wave-generated fluid
mud deposits in the Tilje Formation (Jurassic), offshore Norway. Geology, 37,
539–542.

Jain, S., Abdelhady, A.A., & Alhussein, M., 2019. Responses of benthic
foraminifera to environmental variability: A case from the Middle Jurassic of
the Kachchh Basin (Western India). Marine Micropaleontology, 151, 101749.

Jiang, C., Wu, Z., Chen, J., Deng, B., & Long, Y., 2015. Sorting
and sedimentology character of sandy beach under wave action. Procedia
Engineering, 116, 771-777.

Kamaludin, H., 1993. The changing mangrove shoreline in Kuala Kurau,
Peninsular Malaysia. In: C.D. Woodroffe (Ed.), Late Quaternary evolution of
coastal and lowland riverine plains of Southeast Asia and Northern Australia.
Sedimentary Geology, 83, 187–197.

Kamaludin, B.H., 2002. Holocene sea level changes in Peninsular Malaysia.
Bulletin of the Geological Society of Malaysia, 45, 301-307.

Kamaludin, B. H., 2003. Mid-Holocene to recent sea level changes in
Peninsular Malaysia: A tectonic implication. Bulletin of the Geological Society
of Malaysia, 46, 313-318.

Khan, N.S., Ashe, E., Horton, B.P., Dutton, A., Kopp, R.E., Brocard,
G., Engelhart, S.E., Hill, D.F., Peltier, W.R., Vane, C.H., & Scatena,
F.N., 2017. Drivers of Holocene sea-level change in the Caribbean. Quaternary
Science Reviews, 155, 13-36.

Khan, N.S., Horton, B.P., Engelhart, S., Rovere, A., Vacchi, M.,
Ashe, E.L., Törnqvist, T.E., Dutton, A., Hijma, M.P., & Shennan, I., 2019.
Inception of a global atlas of sea levels since the Last Glacial Maximum.
Quaternary Science Reviews, 220, 359-371.

Khoo, T., 1996. Geomorphological evolution of the Merbok estuary
area and its impact on the early state of Kedah, northwest Peninsular Malaysia.
Journal of Southeast Asian Earth Sciences, 13(3-5), 347-371.

Kirby, R., & Parker, W.R., 1983. Distribution and behavior of
fine sediment in the Severn Estuary and inner Bristol Channel, U.K. Canadian
Journal of Fisheries and Aquatic Sciences, 40, 83–95.

Kudrass, H.R., & Schluter, H.U., 1994. Development of
cassiterite bearing sediments and their relation to late Pleistocene sea level
changes in the Straits of Malacca. Marine Geology, 120, 175-202.

Kvale, E.P., 2012. Tidal constituents of modern and ancient tidal rhythmites:
Criteria for recognition and analyses. In: Davis,

R.A. Jr., & Dalrymple, R.W. (Eds.), Principles of tidal
sedimentology. Springer, Dordrecht. 621 p.

Law, W.M., 1970. Generalized soil map Peninsular Malaysia. Soil
Survey Division, Ministry of Agriculture and Fisheries, Malaysia.

Leuven, J.R.F.W., Kleinhans, M.G., Weisscher, S.A.H., & van der
Vegt, M., 2016. Tidal sand bar dimensions and shapes in estuaries.
Earth-Science Reviews, 161, 204–233.

Lindbo, D.L., Stolt, M.H., & Vepraskas, M.J., 2010.
Redoximorphic features. In: G. Stoops, V. Marcelino, & F. Mees (Eds.), Interpretation
of micromorphological features of soils and regoliths. Elsevier, Amsterdam, the
Netherlands. 1000 p.

Lindholm, R.C., 1987. Grain size. In: Lindholm, R.C. (Ed.), A
practical approach to sedimentology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7683-5.

Lindholm, R.C., 2012. A practical approach to sedimentology. Springer
Science & Business Media, Vancouver. 291 p.

Liu, Z., Colin, C., Huang, W., Le, K.P., Tong, S., Chen, Z., & Trentesaux,
A., 2007. Climatic and tectonic controls on weathering in South China and the
Indochina Peninsula: Clay mineralogical and geochemical investigations from the
Pearl, Red, and Mekong drainage basins. Geochemistry, Geophysics, Geosystems,
8(5). https://doi.org/10.1029/2006GC001490.

Loucks, R.G., & Ruppel, S.C., 2007. Mississippian Barnett Shale:
Lithofacies and depositional setting of a deep-water shale-gas succession in
the Fort Worth Basin, Texas. AAPG Bulletin, 91(4), 579-601.

MacKay, D.A., & Dalrymple, R.W., 2011. Dynamic mud deposition in
a tidal environment: The record of fluid-mud deposition in the Cretaceous
Bluesky Formation, Alberta, Canada. Journal of Sedimentary Research, 81(12),
901–920.

Mallinson, D., Culver, S., Corbett, D., Parham, P., Shazili, M., Azhar,
N., & Rosnan, Y., 2014. Holocene coastal response to monsoons and relative
sea-level changes in northeast Peninsular Malaysia. Journal of Asian Earth
Sciences, 91, 194-205.

Martin, J., Cantelli, A., Paola, C., Blum, M., & Wolinsky, M.,
2011. Quantitative modeling of the evolution and geometry of incised valleys.
Journal of Sedimentary Research, 81, 64–79.

McCabe, P., 2009. Depositional environments of coal and coal-bearing
strata. In: R.A. Rahmani, & R.M. Flores (Eds.), Sedimentology of coal and
coal-bearing sequences. John Wiley & Sons. 368 p.

McCabe, A.M., Dardis, G.F., & Hanvey, P.M., 1984. Sedimentology
of a late Pleistocene submarine-moraine complex, County Down, Northern Ireland.
Journal of Sedimentary Research, 54(3), 716-730.

Miall, A.D., 1996. The geology of fluvial deposits: Sedimentary facies,
basin analysis, and petroleum geology. Springer, Berlin, Heidelberg, New York,
London, Paris, Tokyo, Hong Kong. 582 p.

Minhat, F.I., Satyanarayana, B., Husain, M.L., & Rajan, V.V.V., 2016.
Modern benthic foraminifera in subtidal waters of Johor: Implications for
Holocene sea-level change on the East Coast of Peninsular Malaysia. Journal of
Foraminiferal Research, 46(4), 347–357.

Mohd Hasmadi, I., Pakhriazad, H.Z., & Norlida, K., 2011. Remote sensing
for mapping RAMSAR heritage site at Sungai Pulai Mangrove Forest Reserve,
Johore, Malaysia. Sains Malaysiana, 40(2), 83–88.

Mulamba, T., Bacopoulos, P., Kubatko, E., & Pinto, G., 2019. Sea-level
rise impacts on longitudinal salinity for a low-gradient estuarine system.
Climatic Change, 152(3-4), 533-550.

Murray, J.W., 2003. An illustrated guide to the benthic foraminifera
of the Hebridean shelf, west of Scotland, with notes on their mode of life.
Palaeontologia Electronica, 5(1), 31.

Nanson, G.C., 1980. Point bar and floodplain formation of the meandering
Beatton River, northeastern British Columbia, Canada. Sedimentology, 27, 3-29.

Noorbergen, L.J., Abels, H.A., Hilgen, F.J., Robson, B.E., de Jong, E.,
Dekkers, M.J., Krijgsman, W., Smit, J., Collinson, M.E., & Kuiper, K.F.,
2018. Conceptual models for short‐eccentricity‐scale climate
control on peat formation in a lower Palaeocene fluvial system,
north‐eastern Montana (USA). Sedimentology, 65(3), 775-808.

Parham, P.R., 2016. Late Cenozoic relative sea-level highstand record
from Peninsular Malaysia and Malaysian Borneo: Implications for vertical
crustal movements. Bulletin of the Geological Society of Malaysia, 62, 91-115.

Parham, P.R., Saito, Y., Noraisyah, S., Rokiah, S., & Noor
Azariyah, M., 2014. Evidence for ca. 7 ka maximum Holocene transgression on the
Peninsular Malaysia east coast. Journal of Quaternary Science, 29, 414-422.

Parham, P.R., Noraisyah, S., Rokiah, S., & Noor Azariyah, M.,
2014b. Holocene relative sea-level highstand patterns, Peninsular Malaysia east
coast. Abstracts with Programs, Geological Society of America Annual Meeting.
Vancouver, BC, Canada.

Peterson, J.M., & Bell, S.S., 2012. Tidal events and salt-marsh structure
influence black mangrove (Avicennia germinans) recruitment across an ecotone.
Ecology, 93, 1648–1658.

Peterson, J.M., & Bell, S.S., 2015. Saltmarsh boundary modulates
dispersal of mangrove propagules: Implications for mangrove migration with
sea-level rise. PLoS ONE, 10(3), e0119128.

Plummer, P.S., & Gostin, V.A., 1981. Shrinkage cracks:
Desiccation or syneresis? J. Sed. Petrol., 51, 1147–1156.

Retallack, G., 2001. Soils of the past, an introduction to pedology.
Blackwell, Oxford. 600 p.

Saintilan, N., Khan, N.S., Ashe, E., Kelleway, J.J., Rogers, K., Woodroffe,
C.D., & Horton, B.P., 2020. Thresholds of mangrove survival under rapid sea
level rise. Science, 368(6495), 1118-1121.

Salles, T., Flament, N., & Müller, D., 2017. Influence of mantle
flow on the drainage of eastern Australia since the Jurassic Period. Geochem.
Geochemistry, Geophysics, Geosystems, 18(1), 280-305.

Sathiamurthy, E., & Voris, H.K., 2006. Maps of Holocene sea level
transgression and submerged lakes on the Sunda Shelf. The Natural History
Journal of Chulalongkorn University, Supplement, 2, 1-43.

Scholl, D.W., & Stuiver, M., 1967. Recent submergence of
southern Florida: A comparison with adjacent coasts and other eustatic data.
Geological Society of America Bulletin, 78, 437–454.

Shan, X., Shi, X., Qiao, S., Jin, L., Otharán, G.A., Zavala, C.,
Liu, J., Zhang, Y., Zhang, D., Xu, T., & Fu, C., 2019. The fluid mud flow
deposits represent mud caps of Holocene hybrid event beds from the widest and
gentlest shelf. Marine Geology, 415, 105959.

Shennan, I., Bradley, S., & Edwards, R., 2018. Relative
sea-level changes and crustal movements in Britain and Ireland since the Last
Glacial Maximum. Quaternary Science Reviews, 188, 143-159.

Short, A.D., 1991. Macro-meso tidal beach morphodynamics – An overview.
Journal of Coastal Research, 7(2), 417–436.

Sinsakul, S., Sonsuk, M., & Hasting, P.J., 1985. Holocene sea
levels in Thailand: Evidence and basis for interpretation. Journal of the
Geological Society of Thailand, 8, 1–12.

Sinsakul, S., 1992. Evidence of Quaternary sea level changes in the
coastal areas of Thailand: A review. Journal of Southeast Asian Earth Sciences,
7, 23–37.

Smoot, J.P., 1983. Depositional subenvironments in an arid closed basin;
Wilkins Peak Member of the Green River Formation (Eocene), Wyoming, U.S.A.
Sedimentology, 30, 801–827.

Supardi, Subekty, A.D., & Neuzil, S.G., 1993. General geology and
peat resources of the Siak Kanan and Bengkalis Island peat deposits, Sumatra,
Indonesia. In: Cobb, J.C., & Cecil, C.B. (Eds.), Modern and ancient
coal-forming environments. Geological Society of America Special Paper, 286,
45–61.

Tam, C.Y., Zong, Y., Hassan, K., bin Ismal, H., Jamil, H., Xiong,
H., Wu, P., Sun, Y., Huang, G., & Zheng, Z., 2018. A below-the-present late
Holocene relative sea level and the glacial isostatic adjustment during the
Holocene in the Malay Peninsula. Quaternary Science Reviews, 201, 206–222.

Taylor, D., Saksena, P., Sanderson, P.G., & Kucera, K., 1999. Environmental
change and rain forests on the Sunda shelf of Southeast Asia: Drought, fire and
the biological cooling of biodiversity hotspots. Biodiversity &
Conservation, 8(9), 1159-1177.

Tessier, B., 1993. Upper intertidal rhythmites in the
Mont-Saint-Michel Bay (NW France): Perspectives for paleoreconstruction. Marine
Geology, 110(3-4), 355- 367.

Tjia, H.D., 1992. Holocene sea-level changes in the Malay-Thai Peninsula,
a tectonically stable environment. Bulletin of the Geological Society of
Malaysia, 31, 157-176.

Tjia, H.D., 1996. Sea-level changes in the tectonically stable Malay-Thai
Peninsula. Quaternary International, 31, 95-101.

Tjia, H.D., 2001. The rate of geological processes: Natural
modifications and destruction of the environment. Universiti Kebangsaan
Malaysia, Lestari lecture 30.

Tjia, H.D., 2004. Accelerated shoreline growth and landscape development
in Sungai Muda coastal plain. Warisan Geologi, 6, 195-206.

Tjia, H.D., & Sharifah Mastura, S.A., 2013. Sea level changes in
Peninsular Malaysia: A geological perspective. Penerbit Universiti Kebangsaan
Malaysia, Bangi. 150 p.

Tucker, M.E., 2003. Sedimentary rock in the field. John Wiley and Sons
Ltd. 228 p.

Van den Berg, J.H., Boersma, J.R., & Gelder, A.V., 2007.
Diagnostic sedimentary structures of the fluvial-tidal transition zone–Evidence
from deposits of the Rhine and Meuse. Netherlands Journal of Geosciences,
86(3), 287-306.

Vital, H., Gomes, M.P., Tabosa, W.F., Frazão, E.P., Santos, C.L.A., &
Placido, Junior_J.S., 2010. Characterization of the Brazilian continental shelf
adjacent to Rio Grande Do Nortestate, NE Brazil. Brazilian Journal of
Oceanography, 58, 43–54.

Voris, H.K., 2000. Maps of Pleistocene sea levels in Southeast Asia:
Shorelines, river systems and time durations. Journal of Biogeography, 27(5),
1153–1167.

Wang, R., Colombera, L., & Mountney, N.P., 2019. Geological controls
on the geometry of incised‐valley fills: Insights from a global dataset
of late‐Quaternary examples. Sedimentology, 66, 2134–2168.

Wilmes, S.B., Schmittner, A., & Green, J.A.M., 2019. Glacial ice
sheet extent effects on modeled tidal mixing and the global overturning
circulation. Paleoceanography and Paleoclimatology, 34, 1437– 1454.

Woodroffe, S.A., & Horton, B.P., 2005. Holocene sea-level
changes in the Indo-Pacific. Journal of Asian Earth Sciences, 25, 29-43.

Zhang, L., Buijsman, M.C., Comino, E., & Swinney, H.L., 2017. Internal
wave generation by tidal flow over periodically and randomly distributed
seamounts, Journal of Geophysical Research: Oceans, 122(6), 5063-5074.

 

Manuscript received 29 June 2021

Received in revised form 26 October 2022

Accepted 1 November 2022

Available online 30 November 2022

 

0126-6187; 2637-109X / Published by the Geological Society of Malaysia.

 

© 2022 by the Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC-BY) License 4.0.

 

DOI: https://doi.org/10.7186/bgsm74202206