Gas hydrate resource potential of deepwater Sabah, Malaysia: A preliminary assessment

bgsm742022
Author : Mazlan Madon
Publication : Bulletin of the Geological Society of Malaysia
Page : 1 - 15
Volume Number : 74
Year : 2022
DOI : doi.org/10.7186/bgsm74202201

Bulletin of the Geological Society of Malaysia, Volume 74, November 2022, pp. 1 – 15

 

Gas hydrate resource potential of deepwater Sabah, Malaysia: A preliminary assessment

 

Mazlan Madon

Malaysian Continental Shelf Project, National Security Council, c/o 11th Floor, Wisma JUPEM, Jalan Semarak, 50578 Kuala Lumpur, Malaysia

Author email address: mazlan.madon@gmail.com

 

Abstract: Offshore NW Sabah is one of the localities identified in the United States Geological Survey (USGS) global hydrates
database but not much work has been done on this potential source of energy for Malaysia and the surrounding region. The presence of gas hydrates in this area is mainly inferred from bottom-simulating reflectors (BSR) identified in seismic reflection profiles across the margin. BSRs have been mapped across almost the entire length of the deepwater fold-thrust belt in the Sabah Trough where they are commonly observed within the crests of fold-thrust anticlines. Based on an average geothermal gradient of 62.5 °C/km, the thickness of the gas hydrate stability zone is predicted to vary with water depth from zero at 640 m water depth to 300 m at 2900 m water depth. The total in-place methane resource from the Sabah gas hydrates is estimated to range from 72 to 852 trillion cu. ft. (TCF) (2.06 – 24.1 x 1012 m3) with a mean of 364 TCF (10.3 x 1012 m3) and a most likely (P50) value of 252 TCF (7.1 x 1012 m3). These preliminary estimates may seem large but they are comparable with those from other gas hydrate deposits in the region. More work is required to refine them in order to determine how much of the in situ volume is technically and economically recoverable.

 

Keywords: Offshore Sabah, gas hydrates, bottom-simulating reflector, methane, gas hydrate stability zone, gas resource

 

References

Behain, D., 2005. Gas hydrate offshore NW Sabah: Morpho-tectonic
influence on the distribution of gas hydrate and estimation of concentration of
gas hydrate above and free gas below the Gas Hydrate Stability Zone. Doctoral
dissertation. Technical University of Clausthal. 153 p.

Behain, D., Fertig, J., Meyer, H., Franke, D., & Barckhausen,
U., 2003. Properties of a gas hydrate province on a subduction collision related
margin off Sabah, NW Borneo. (POPSCOMS). EGS – AGU – EUG Joint Assembly,
Abstract 10008. (POPSCOMS). EGS – AGU – EUG Joint Assembly, Abstract 10008.

Birchwood, R., Dai, J., Shelander, D., Boswell, R., Collett, T., Cook,
A., Dallimore, S., Fujii, K., Imasato, Y., Fukuhara, M., Kusaka, K., Murray,
D., & Saeki, T., 2010. Development of gas hydrates. Schlumberger Oilfield
Review, 22(1), 18-33.

Cook, A.E., & Portnov, A., 2022. Natural gas hydrate systems.
In: Bell, R., Iacopini, D., Vardy, M. (Eds.), Interpreting seismic data.
Elsevier, 17-32. https://doi.org/10.1016/B978-0-12-818562-9.00006-6.

Dan, G., Cauquil, E., & Bouroullec, J.-L., 2014. 3D seismic and AUV
data integration for deepwater geohazard assessment: Application to offshore
Northwest Borneo, Brunei. Offshore Technology Conference-Asia, Kuala Lumpur,
Malaysia, March 2014. Paper Number: OTC-24796-MS.
https://doi.org/10.4043/24796-MS.

Franke, D., Barckhausen, U., Heyde, I., Tingay, M., & Ramli, N.,
2008. Seismic images of a collision zone offshore NW Sabah/Borneo. Marine and
Petroleum Geology, 25(7), 606-624.
https://doi.org/10.1016/j.marpetgeo.2007.11.004.

Fujii, T., Nakamizu, M., Tsuji, Y., Namikawa, T., Okui, T.,
Kawasaki, M., Ochiai, K., Nishimura, M., & Takano, O., 2009.
Methane-hydrate occurrence and saturation confirmed from core samples, eastern
Nankai Trough, Japan. In: T. Collett, A. Johnson, C. Knapp & R. Boswell
(Eds.), Natural gas hydrates—Energy resource potential and associated geologic
hazards. AAPG Memoir, 89, 385–400. https://doi.org/10.1306/13201112M893350.

Fujii, T., Suzuki, K., Takayama, T., Tamaki, M., Komatsu, Y., Konno,
Y., Yoneda, J., Yamamoto, K., & Nagao, J., 2015. Geological setting and
characterization of a methane hydrate reservoir distributed at the first
offshore production test site on the Daini Atsumi Knoll in the eastern Nankai
Trough, Japan. Marine and Petroleum Geology, 66, 310–322.
http://dx.doi.org/10.1016/j.marpetgeo.2015.02.037.

Gee, M.J.R., Uy, H.S., Warren, J., Morley, C.K., & Lambiase,
J.J., 2007. The Brunei slide: A giant submarine landslide on the North West
Borneo Margin revealed by 3D seismic data. Marine Geology, 246(1), 9-23.
https://doi.org/10.1016/j.margeo.2007.07.009.

Goh, H.S., Jong, J., McGiveron, S., & Fitton, J., 2017. A case
study of gas hydrates in offshore NW Sabah, Malaysia: Implications as a shallow
geohazard for exploration drilling and a potential future energy resource.
National Geoscience Conference, 9-10 October 2017, Hotel Istana Kuala Lumpur.

Grant, C.J., 2005. Sequence boundary mapping and paleogeographic
reconstruction: The keys to understanding deepwater fan deposition across the
NW Borneo active margin. adapted from oral presentation at 2005 SEAPEX
Exploration Conference, Singapore, 5-7 April.

Hadley, C., Peters, D., Vaughan, A., & Bean, D., 2008.
Gumusut-Kakap Project: Geohazard characterisation and impact on field
development plans. International Petroleum Technology Conference, 3-5 December,
Kuala Lumpur, Malaysia. https://doi.org/10.2523/IPTC-12554-MS.

Haines, S.S., Collett, T., Boswell, R., Lim, T., Okinaka, N.,
Suzuki, K., & Fujimoto, A., 2020. Gas hydrate saturation estimation from acoustic
log data in the 2018 Alaska North Slope Hydrate-01 stratigraphic test well.
10th International Conference on Gas Hydrates (ICGH10), Jun 21-26, 2020,
Singapore.

Hazebroek, H.P., & Tan, D.N.K., 1993. Tertiary tectonic
evolution of the NW Sabah continental margin. Bulletin of the Geological Society
of Malaysia, 33, 195-210. https://doi.org/10.7186/bgsm33199315.

Hesse, S., Back, S., & Franke, D., 2009. The deep-water
fold-and-thrust belt offshore NW Borneo: Gravity-driven versus basement-driven
shortening. Geological Society of America Bulletin, 121, 939-953.
https://doi.org/10.1130/B26411.1.

Hesse, S., Back, S., & Franke, D., 2010. The structural evolution
of folds in a deepwater fold and thrust belt – A case study from the Sabah
continental margin offshore NW Borneo, SE Asia. Marine and Petroleum Geology,
27(2), 442-454. https://doi.org/10.1016/j.marpetgeo.2009.09.004.

Hinz, K., Fritsch, J., Kempter, E.H.K., Mohammad, A.M., Vosberg, H.,
Weber, J., & Benavidez, J., 1989. Thrust tectonics along the northwestern
continental margin of Sabah/Borneo. Geologische Rundschau, 78(3), 705-730.

Holbrook, W.S., Hoskins, H., Wood, W.T., Stephen, R.A., &
Lizarralde, D., 1996. Methane hydrate and free gas on the Blake Ridge from
vertical seismic profiling. Science, 273(5283), 1840–1843.

Holland, M.E., Schultheiss, P.J., & Roberts, J.A., 2019. Gas
hydrate saturation and morphology from analysis of pressure cores acquired in
the Bay of Bengal during expedition NGHP-02, offshore India. Marine and
Petroleum Geology, 108, 407-423. https://doi.org/10.1016/j.marpetgeo.2018.07.018.

Hutchison, C.S., 2004. Marginal basin evolution: The southern South
China Sea. Marine and Petroleum Geology, 21, 1129–1148. https://doi.org/10.1016/j.marpetgeo.2004.07.002.

Hutchison, C.S., 2010. The North-West Borneo trough. Marine Geology,
271, 32–43. https://doi.org/10.1016/j.margeo.2010.01.007.

Hutchison, C.S., & Vijayan, V.R., 2010. What are the Spratlys? Journal
of Asian Earth Sciences, 39, 371-385.
https://doi.org/10.1016/j.jseaes.2010.04.013.

Ingram, G.M., Chisholm, T.J., Grant, C.J., Hedlund, C.A.,
StuartSmith, P., & Teasdale, J., 2004. Deepwater North West Borneo:
Hydrocarbon accumulation in an active fold and thrust belt. Marine Petroleum
Geology, 21, 879–887. https://doi.org/10.1016/j.marpetgeo.2003.12.007.

Jong, J., Goh, H.S., McGiveron, S., & Fitton, S., 2020. A case study
of natural gas hydrates (NGH) in offshore NW Sabah: Identification, shallow
geohazard implication for exploration drilling, extraction challenges and
potential energy resource estimation. Bulletin of the Geological Society of
Malaysia, 70, 57 – 75. https://doi.org/10.7186/bgsm70202005.

Konno, Y., Jin, Y., Shinjou, K., & Nagao, J., 2014. Experimental
evaluation of the gas recovery factor of methane hydrate in sandy sediment. RSC
Adv., 4(93), 51666-51675. https://doi.org/10.1039/C4RA08822K.

Krey, V., Canadell, J.G., Nakicenovic, N., & 15 others, 2009.
Gas hydrates: Entrance to a methane age or climate threat? Environ. Res. Lett.,
4(034007), 6 p. https://doi.org/10.1088/1748-9326/4/3/034007.

Kvenvolden, K.A., 1993. Gas hydrates—Geological perspective and
global change. Rev. Geophys., 31, 173–187. https://doi.org/10.1029/93RG00268.

Kvenvolden, K.A., 1999. Potential effects of gas hydrate on human welfare.
Proc. Natl. Acad. Sci. USA, 96, 3420–3426.
https://doi.org/10.1073/pnas.96.7.3420.

Laird, A.P., & Morley, C.K., 2011. Development of gas hydrates
in a deep-water anticline based on attribute analysis from three-dimensional
seismic data. Geosphere, 7(1), 240–259. https://doi.org/10.1130/GES00598.1.

Liu, C., Ye, Y., Meng, Q-G., & 8 others, 2012. The
characteristics of gas hydrates recovered from Shenhu Area in the South China
Sea. Marine Geology, 307-310, 22-27.
https://doi.org/10.1016/j.margeo.2012.03.004.

Lu, S.-M., 2015. A global survey of gas hydrate development and
reserves: Specifically in the marine field. Renewable and Sustainable Energy
Reviews, 41, 884–900. https://doi.org/10.1016/j.rser.2014.08.063.

Madon, M. & Jong, J., 2021. Geothermal gradient and heat flow maps
of offshore Malaysia: Some updates and observations. Bulletin of the Geological
Society of Malaysia, 71, 159-183. https://doi.org/10.7186/bgsm71202114.

Madon, M., Norazlina, J., Ayub, A., Nor Kartini Suriati, M., Najmi, S.M.,
Ahmad Zamzamie, I., & Azhar, Y., 2015. Structural evolution of the NW Sabah
Deepwater fold-and-thrust belt and its implications for hydrocarbon
prospectivity. Asia Petroleum Geoscience and Exhibition (APGCE) 2015, 12-13
October, Kuala Lumpur. Proceedings and Abstracts.

Majorowicz, J., & Osadetz, K.G., 2001. Gas hydrate distribution and
volume in Canada. AAPG Bulletin, 85(7), 1211–1230.
https://doi.org/10.1306/8626CA9B-173B-11D7-8645000102C1865D.

Majumdar, U., Cook, A.E., Shedd, W., & Frye, M., 2016. The connection
between natural gas hydrate and bottom-simulating reflectors. Geophys. Res.
Lett., 43, 7044–7051. https://doi.org/10.1002/2016GL069443.

Maslin, M., Owen, M., Betts, R., Day, S., Jones, T.D., &
Ridgwell, A., 2010. Gas hydrates: Past and future geohazard? Philosophical Transactions
of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 368(1919), 2369-2393.

McGiveron, S., & Jong, J., 2018. Complex geothermal gradients and
their implications, deepwater Sabah, Malaysia. Bulletin of the Geological
Society of Malaysia, 66, 15 – 23. https://doi.org/10.7186/bgsm66201803.

McLeod, M.K., 1982. Gas hydrates in ocean bottom sediments. AAPG
Bull., 66(12), 2649-2662.
https://doi.org/10.1306/03B5AC8C-16D1-11D7-8645000102C1865D.

Mienert, J., Tréhu, A.M., Berndt, C., Camerlenghi, A., Liu, C.-S., &
Massironi, M., 2022. Finding and using the world’s gas hydrates. In: Mienert,
J., Christian Berndt, Anne M. Tréhu, Angelo Camerlenghi, & Char-Shine Liu
(Eds.), World atlas of submarine gas hydrates in Continental Margins. Springer,
Cham, Switzerland. 514 p. https://doi.org/10.1007/978-3-030-81186-0_3.

Miyakawa, A., Saito, S., Yamada, Y., Tomaru, H., & Kinoshita,
M., 2014. Gas hydrate saturation at Site C0002, IODP Expeditions 314 and 315,
in the Kumano Basin, Nankai trough. Island Arcs, 23(2), 142-156.
https://doi.org/10.1111/iar.12064.

Morley, C.K., King, R.C., Hillis, R., Tingay, M., & Backe, G., 2011.
Deepwater fold and thrust belt classification, tectonics, structure and
hydrocarbon prospectivity: A review. Earth-Science Reviews, 104, 41–91.
https://doi.org/10.1016/j.earscirev.2010.09.010.

Mosher, D.C., 2008. Bottom simulating reflectors on Canada’s East Coast
Margin: Evidence for gas hydrate. Proceedings of the 6th International
Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA,
July 6-10, 2008.

Mosher, D.C., 2011. A margin-wide BSR gas hydrate assessment: Canada’s
Atlantic margin. Marine and Petroleum Geology, 28, 1540 – 1553.
https://doi.org/10.1016/j.marpetgeo.2011.06.007.

Nurfadhila, M.S., Ahmad Shamsul Kamal, & Anuar A. Aziz, 2018. Gas
hydrate potential in Malaysia – Catching up to compete with shale gas potential
in Malaysia. AAPG Asia Pacific Region GTW, Bangkok, Thailand, September 26-27,
2018. AAPG Datapages/Search and Discovery Article #90331.

Ohde, A., Otsuka, H., Kioka, A., & Ashi, J., 2018. Distribution and
depth of bottom-simulating refectors in the Nankai subduction margin. Earth,
Planets and Space, 70:60. 20 p. https://doi.org/10.1186/s40623-018-0833-5.

Paganoni, M., Cartwright, J.A., Foschi, M., Shipp, R.C., & Van Rensbergen,
P., 2016. Structure II gas hydrates found below the bottom-simulating
reflector. Geophys. Res. Lett., 43, 5696–5706.
https://doi.org/10.1002/2016GL069452.

Paganoni, M., Cartwright, J.A., Foschi, M., Shipp, G.R., & Van Rensbergen,
P., 2018. Relationship between fluid-escape pipes and hydrate distribution in
offshore Sabah (NW Borneo). Marine Geology, 395, 82–103.
http://dx.doi.org/10.1016/j.margeo.2017.09.010.

Pecher, I.A., & Henrys, S.A., 2003. Potential gas reserves in
gas hydrate sweet spots on the Hikurangi Margin, New Zealand. Institute of
Geological and Nuclear Sciences, 2003/23.

Reagan, M.T., & Moridis, G.T., 2007. Oceanic gas hydrate
instability and dissociation under climate change scenarios. Geophys. Res.
Lett., 34, L22709. https://doi.org/10.1029/ 2007GL031671.

Riedel, M., Collett, T.S., Malone, M.J., and the IODP Expedition 311
Scientists, 2006. Stages of gas-hydrate evolution on the Northern Cascadia
Margin. Sci. Dril., 3, 18–24. https://doi.org/10.2204/iodp.sd.3.04.2006.

Rose, P.R., 2001. Risk analysis and management of petroleum exploration
ventures. AAPG Methods in Exploration, 12. https://doi.org/10.1306/Mth12792.

Ruppel, C.D., 2011. Methane hydrates and contemporary climate change.
Nature Education Knowledge, 3(10): 29.

Ruppel, C.D., 2018. Gas hydrate in nature. U.S. Geological Survey,
Fact Sheet 2017–3080, 4 p. https://doi.org/10.3133/fs20173080.

Ryan, W.B.F., Carbotte, S.M., Coplan, J.O., O’Hara, S., Melkonian, A.,
Arko, R., Weissel, R.A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski,
J., & Zemsky, R., 2009. Global multi-resolution topography synthesis.
Geochem. Geophys. Geosyst., 10, Q03014. http://dx.doi.org/10.1029/2008GC002332.

Shepherd, M., 2009. Factors influencing recovery from oil and gas fields.
In: Shepherd, M. (Ed.), Oil field production geology, AAPG Memoir, 91, 37-46.

Sloan, E.D. Jr., 1998. Clathrate hydrates of natural gases (Second Edition).
Marcel Dekker Inc., New York, Basel. 705 p.

Su, M., Yang, R., Wang, H., Sha, Z., Liang, J., Wu, N., Qiao, S., &
Cong, X., 2016. Gas hydrates distribution in the Shenhu area, northern South
China Sea: Comparisons between the eight drilling sites with gas-hydrate
petroleum system. Geologica Acta, 14(2), 79-100.
https://doi.org/10.1344/GeologicaActa2016.14.2.1.

Su, P., Lin, L., Lv, Y., Liang, J., Sun, Y., Zhang,W., He, H., Yan,
B., Ji, Z., & Wang, L., et al., 2022. Potential and distribution of natural
gas hydrate resources in the South China Sea. J. Mar. Sci. Eng., 10, 1364.
https://doi.org/10.3390/jmse10101364.

Torres, M.E., Tréhu, A.M., Cespedes, N., Kastner, M., Wortmann, U.G.,
Kim, J.-H., Long, P., Malinverno, A., Pohlman, J.W., Riedel, M., & Collett,
T., 2008. Methane hydrate formation in turbidite sediments of northern
Cascadia, IODP Expedition 311. Earth and Planetary Science Letters, 271,
170–180.

Tréhu, A.M., Bohrmann, G., Rack, F.R., Torres, M.E., and the Leg 204
Scientific Party, 2003. ODP Leg 204: Gas hydrate distribution and dynamics
beneath Southern Hydrate Ridge. JOIDES Journal, 29(2), 6-8.

Tréhu, A.M., Long, P.E., Torres, M.E., and the Leg 204 Scientific Party,
2004. Three-dimensional distribution of gas hydrate beneath southern Hydrate
Ridge: Constraints from ODP Leg 204. Earth and Planetary Science Letters, 222,
845 – 862.

Vijayan, V.R., Stagg, H., & Foss, C., 2013. Crustal character and
thickness over the Dangerous Grounds and beneath the Northwest Borneo Trough.
Journal of Asian Earth Sciences, 76, 389-398.
http://dx.doi.org/10.1016/j.jseaes.2013.06.004.

Waite, W.F., Ruppel, C.D., Boze, L.-G., Lorenson, T.D., Buczkowski,
B.J., McMullen, K.Y., & Kvenvolden, K.A., 2020. Preliminary global database
of known and inferred gas hydrate locations. U.S. Geological Survey data
release. https://doi.org/10.5066/P9llFVJM.

Wang, J., & Lau, H.C., 2020. Thickness of gas hydrate stability zone
in permafrost and marine gas hydrate deposits: Analysis and implications. Fuel,
282, 118784. https://doi.org/10.1016/j.fuel.2020.118784.

Wang, S., Yan, W., & Song, H., 2006. Mapping the thickness of
the gas hydrate stability zone in the South China Sea. Terr. Atmos. Ocean.
Sci., 17(4), 815-828.

Wang, X., Hutchinson, D.R., Wu, S., Yang, S., & Guo, Y., 2011.
Elevated gas hydrate saturation within silt and silty clay sediments in the
Shenhu area, South China Sea. Journal of Geophysical Research, 116, B05102.
https://doi.org/10.1029/2010jb007944.

Wang, X., Zhou, J., Li, L., Jin, J., Li, J., Guo, Y., Wang, B., Sun,
L., & Qian, J., 2022. Bottom simulating reflections in the South China Sea.
In: Mienert, J., Christian Berndt, Anne M. Tréhu, Angelo Camerlenghi, &
Char-Shine Liu (Eds.), World atlas of submarine gas hydrates in continental
margins. Springer, Cham, Switzerland. 514 p.
https://doi.org/10.1007/978-3-030-81186-0_13.

Warren, J.K., Cheung, A., & Cartwright, J.A., 2010. Organic geochemical,
isotopic, and seismic indicators of fluid flow in pressurized growth anticlines
and mud volcanoes in modern deep-water slope and rise sediments of offshore
Brunei Darussalam: Implications for hydrocarbon exploration in other mud- and
salt-diapir provinces. In: Wood, L. (Ed.), Shale tectonics. AAPG Memoir, 93,
163-196.

Wu, J., McClay, K., & de Vera, J., 2020, Growth of triangle zone
fold-thrusts within the NW Borneo deep-water fold belt, offshore Sabah,
southern South China Sea. Geosphere, 16(1), 329–356.
https://doi.org/10.1130/GES02106.1.

Yamamoto, K., 2022. Gas hydrate drilling in the Nankai Trough, Japan.
In: Mienert, J., Christian Berndt, Anne M. Tréhu, Angelo Camerlenghi, &
Char-Shine Liu (Eds.), World atlas of submarine gas hydrates in continental
margins. Springer, Cham, Switzerland. 514 p.
https://doi.org/10.1007/978-3-030-81186-0_15.

Yamamoto, K., Wang, X.-X., Tamaki, M., & Suzuki, K., 2019. The second
offshore production of methane hydrate in the Nankai Trough and gas production
behavior from a heterogeneous methane hydrate reservoir. RSC Adv., 9,
25987–26013. https://doi.org/ 10.1039/c9ra00755e.

Ye, J.-L., Qin, X., Xie, W., and 25 others, 2020. The second natural
gas hydrate production test in the South China Sea. China Geology, 2, 197-209.
https://doi.org/10.31035/cg2020043.

Yu, T., Guan, G., Abudula, A., Yoshida, A., Wang, D., & Song,
Y., 2019. Enhanced gas recovery from methane hydrate reservoir in the Nankai
Trough, Japan. Energy Procedia, 158, 5213–5218.

Zhang, R.-W., Lu, J., Wen, P., Kuang, Z., Zhang, B., Xue, H., Xu, Y.,
& Chen, X., 2018. Distribution of gas hydrate reservoir in the first
production test region of the Shenhu area, South China Sea. China Geology, 4,
493−504. https://doi.org/10.31035/cg2018049.

Zhang, X., Hu, T., Pang, X.-Q., Hu, Y., Wang, T., Wang, E.-Z., Xu,
Z., Liu, X.-H., & Wu, Z.-Y., 2021. Evaluation of natural gas hydrate
resources in the South China Sea by combining volumetric and trend-analysis
methods. Petroleum Science, 19(1), 37-47.
https://doi.org/10.1016/j.petsci.2021.12.008.

 

Manuscript received 13 February 2022;

Received in revised form 25 March 2022;

Accepted 28 March 2022

Available online 30 November 2022

 

0126-6187; 2637-109X / Published by the Geological Society of Malaysia

 

© 2022 by the Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC-BY) License 4.0.

 

DOI: https://doi.org/10.7186/bgsm74202201