The potential of acid mine drainage formation at Bukit Besi, Dungun, Terengganu

bgsm742022
Author : Nuur Hani Mohammed, Wan Zuhairi Wan Yaacob
Publication : Bulletin of the Geological Society of Malaysia
Page : 161 - 168
Volume Number : 74
Year : 2022
DOI : doi.org/10.7186/bgsm74202210

Bulletin of the Geological Society of Malaysia, Volume 74, November 2022, pp. 161 – 168

The potential of acid mine drainage formation at Bukit Besi, Dungun, Terengganu

Nuur Hani Mohammed1,2,*, Wan Zuhairi Wan Yaacob1

1 Program Geologi, Pusat Pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

2 No. 24, Jalan Kp 2/2 Taman Kota Perdana, Bandar Putra Permai, 43300 Seri Kembangan, Selangor, Malaysia

* Corresponding author email address: nuurhanimohammed@gmail.com

 

Abstract: Acid mine drainage (AMD) at Bukit Besi is often accompanied by high concentrations of various heavy metal such as iron, lead, copper, zink, cadmium, manganese, nikel, and arsenic. The samples were collected from active mining site at Cheng Yu, Bukit Besi. The physical and chemical tests used are ion chromatography (IC) and inductively coupled plasma (ICP) test, toxicity characteristic leaching procedure (TCLP), and clay mineralogy using XRF (X-ray fluorescence) and XRD (X-ray diffraction) techniques. Static test which is acid-base counting are used to predict the potential of AMD. The water analysis showed a very acidic water with pH < 3.5 with high concentration of heavy metals like Fe (822.03 mg/L) and sulfate (4455.87 mg/L). Acid-bases rock calculation shows highly significant results which have high potential of acid production (9.5 to 155.0 kg CaCO3/ton). The results from physical and chemical analysis show Bukit Besi area is potentially exposed to formation of acid mine drainage.

 

Keywords: Acid mine drainage, heavy metal, acid-base accounting, adsorption analysis

 

 

Potensi pembentukan saliran lombong berasid di Bukit Besi, Dungun, Terengganu

 

Abstrak: Saliran lombong berasid (SLB) di Bukit Besi berkait dengan kepekatan pelbagai
logam berat yang tinggi seperti besi, plumbum, kuprum, zink, kadmium, mangan,
nikel dan arsenik. Sampel kajian diperoleh daripada tapak lombong aktif Cheng
Yu, Bukit Besi. Antara ujian fizikal dan kimia yang digunakan ialah ion kromatografi
(IC) dan plasma induktif (ICP), prosedur ketoksikan ciri-ciri larut lesap
(toxicity characteristic leaching procedure, TCLP), dan mineralogi lempung
dengan menggunakan teknik XRD (X-ray diffraction ) dan XRF (X-ray
fluorescence). Ujian statik iaitu pengiraan asid-bes digunakan untuk meramal
potensi asid dan bes. Hasil analisis air menunjukkan air berasid dengan nilai
pH < 3.5 bersama kepekatan logam berat seperti Fe (822.03 mg/L) and sulfat
(4455.87 mg/L) yang tinggi. Pengiraan asid-bes batuan menunjukkan hasil yang
amat ketara dengan potensi pengeluaran asid yang tinggi (9.5 ke 155.0 kg CaCO3/tan).
Hasil daripada analisis fizikal dan kimia jelas menunjukkan bahawa kawasan
Bukit Besi berpotensi terdedah dengan pembentukan saliran lombong berasid.

 

Kata kunci: Saliran lombong berasid, logam berat, pengiraan asid-bes, analisis penjerapan

 

References

Azman, A.G., 2004. Chemical characteristics of some of the granitic bodies from Terengganu area,
Peninsular Malaysia. Bulletin of the Geological Society of Malaysia, 49, 31-35.

Bignell, J.D., & Snelling, N.J., 1977. Geochronology of Malayan Granite. Overseas Geol. And Min.
Resources 47. H.M Stationary Office, London. 72 p.

Brady, K.B.C., & Hornberger, R.H., 1990. The prediction of mine drainage quality in Pennsylvania.
Water Pollution Control Association Pa. Magazine, 23(5), 8-15.

Brodie, M.J., Broughton, L.M., & Robertson, A., 1991. A conceptual rock classification
system for waste management and a laboratory method for ARD prediction from
rock piles. Second International Conference on the Abatement of Acidic
Drainage. Conference Proceedings, Volumes 1 – 4.

Chapman, H.D., 1965. Cation-exchange capacity. In: C.A. Black (Ed.), Methods of soil analysis –
Chemical and microbiological properties. Agronomy, 9, 891-901.

Charles, A., & Cravotta, II., 2006. Relations among pH, sulphate, and metals concentrations in
anthracite and bituminous coal mine-discharges. The 7th International
Conference on Acid Rock Drainage (ICARD), 378-404.

Cravotta, C.A.I., Brady, K.B.C., Smith, M.W., & Beam, R.L., 1990. Effectiveness of alkaline
addition at surface mines in preventing or abating acid mine drainage: part 1,
geochemical considerations. Proceedings of the 1990 Mining and Reclamation
Conference and Exhibition, Charleston, West Virginia, West Virginia University,
221-226.

Ferguson, K.D., & Morin K.A., 1991. The prediction of acid rock drainage – Lessons from the
database. In Second International Conference on the Abatement of Acidic
Drainage. Conference Proceedings Montreal, Canada, 1 – 4, 16-18.

Gakuto, T., 2015. Sample preparation for X-Ray Fluorenscence analysis. Journal of Rigaku, 31(1),
26-30.

Gurdeep Singh, 1987. Mine water quality deterioration due to acid mine drainage. International
Journal of Mine Water, 6(1), 49-61.

Hosking, K.F.G., 1977. Known relationships between the hard-rock tin deposits and the granites
of Southeast Asia. Bulletin of the Geological Society of Malaysia, 9, 141-157.

Hutchison, C.S., 1984. Mineral concentration and hydrocarbon accumulations in the ESCAP region.
Geology of Tin Deposits in Asia and the Pacific, 3, 594-605.

Ibrahim, A., 2004. On the presence of pre-Carboniferous metasediments in the Eastern Belt: A
structural view. Bulletin of the Geological Society of Malaysia, 49, 79-84.

Jackson, K.J., & Helgeson, H.C., 1985. Chemical and thermodynamic constraints on the
hydrothermal transport and deposition of Tin: II. Interpretation of phase
relations in the southeast Asian Tin belt. Economy Geology, 80, 1365-1378.

Jenkins, D.A., Johnson, D.B., & Freeman, C., 2000. Mynydd Parys Cu-Pb-Zn mines:
Mineralogy, microbiology and acid mine drainage. In: Cotter-Howells, J.D.,
Campbell, L.S., Valsami-Jones, E., & Batchelder. M. (Eds.), Environmental
mineralogy: Microbial interactions, anthropogenic influences, contaminated land
and waste management. The Mineralogy Society Series, 9, 161-180.

Lapakko, K., 1993. Mine waste drainage quality prediction: A literature review. Draft Paper.
Minnesota Department of Natural Resources, Division of Minerals, St. Paul, MN.

Liew, D., & Sheppard, J., 2001. Use of conductivity to monitor the treatment of acid mine
drainage and sulphate-reducing bacteria. Water Resource, 35(8), 2081-2086.

Malin, B., Mona, A., & Paivi, K., 2015. Characterization of the bacterial and sulphate reducing
community in the alkaline and constantly cold water of the closed Kotalahti
mine. Minerals, 5, 452-472.

Nordstrom, D.K., Alpers, C.N., Ptacek, C.J., & Blowes, D.W., 2000. Negative pH and extremely
acidic mine waters from Iron Mountain, California. Environmental Science &
Technology, 34, 254-258.

Patterson, R.J., & Ferguson, K.D., 1994. The Gibraltar North project assessing acid rock
drainage. International Land Reclamation and Mine Drainage Conference and Third
International Conference on the Abatement of Acidic Drainage. U. S. Bureau of
Mines Special Publication SP 06B-94, 12-21.

Singh, D.S., 1985. Geological map of West Malaysia. 8th Edition. Geological Survey of Malaysia.

Smith, R.M., Grube, W.E., Arkle, T.A., & Sobek, A.A., 1974. Mine spoil potentials for soil and
water quality. U.S. Environmental Protection Agency, EPA-670/2-74-070.

Sobek, A.A., Schuller, W.A., Freeman, J.R., & Smith, R.M., 1978. Field and laboratory
methods applicable to overburdens and minesoils. US Environmental Protection
Agency, EPA-600/2-78-054.

Snelling, N.J., Bignell, J.D., & Harding, R.R., 1968. Age of Malayan granites. Geol. En.
Mijnbouw, 47, 358-359.

Teresa, R., & Alfredas, L., 2014. Assessment of general toxicity of the selected industrial
wastes on the basis of the analysis of the total metals concentration. 9th
International Conference on Environmental Engineering, May 22-23, 2014,
Vilnius, Lithuania.

U.S. EPA, 1992. Guidelines for exposure assessment. U.S. Environmental Protection Agency, Risk
Assessment Forum, Washington, DC, EPA/600/Z-92/001.

Voica, C., Kovacs, M.H., Dehelean, A., Ristoiu, D., & Iordache, A., 2011. ICP-MS
determinations of heavy metals in surface waters from Transylvania. Journal of
Environmental Physical 57(7-8), 1184-1193.

Yeap, E.B., 2000. The prospects for hardrock gold and tin deposits in Malaysia. Proceeding of the
Geological Society of Malaysia Annual Geological Conference, Sept. 8-9, Pulau
Pinang, Malaysia.

 

Manuscript received 18 August 2020

Received in revised form 6 February 2021

Accepted 8 March 2021

Available online 30 November 2022

 

0126-6187; 2637-109X / Published by the Geological Society of Malaysia.

 

© 2022 by the Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC-BY) License 4.0.

 

DOI: https://doi.org/10.7186/bgsm74202210