Warta Geologi, Vol. 50, No. 1, April 2024, pp. 15-26
1 Aida Soraya Shamsuddin*, 1 Nurfashareena Muhamad, 1 Aziemah Zulkifli, 2,3 Nur Maizatul Idayu Othman
1 Institut Alam Sekitar dan Pembangunan (LESTARI), Universiti Kebangsaan Malaysia (UKM), 43000 Bangi, Selangor, Malaysia
2 Fakulti Perladangan dan Agroteknologi, Universiti Teknologi Mara (UiTM), 77300 Merlimau, Melaka, Malaysia
3 Kumpulan Inisiatif Penyelidikan (RIG), Konservasi dan Pengurusan Tanah, Universiti Teknologi Mara (UiTM), 40450 Shah Alam, Selangor, Malaysia
* Pengarang koresponden: aidasoraya@ukm.edu.my
Abstrak: Air tanah yang bersih dan lestari adalah aset yang penting untuk kehidupan manusia dan ekosistem. Namun, ancaman pencemaran air tanah semakin meningkat akibat aktiviti manusia seperti perindustrian, pertanian, dan perbandaran. Objektif artikel tinjauan ini adalah untuk meneliti bagaimana teknik isotop, sebagai salah satu teknik nuklear berfungsi sebagai alat yang berkesan dalam mengkaji, mengesan, dan memahami isu pencemaran air tanah berpunca dari aktiviti antropogenik di permukaan. Artikel ini merangkumi penerangan dan perbincangan mengenai jenis-jenis isotop yang digunakan dalam pengesanan pencemaran air tanah dan faktor-faktor yang mempengaruhi variasi komposisi isotop di dalam air tanah berdasarkan dapatan kajian-kajian terdahulu. Selain itu, artikel ini juga memberi ulasan mengenai kajian pencemaran air tanah menggunakan isotop dalam konteks pentaksiran pencemaran air tanah di Malaysia. Artikel ini berfungsi sebagai panduan atau rujukan kepada penyelidik, profesional alam sekitar, dan pengurus sumber air yang ingin memahami dan melaksanakan teknik nuklear dalam pemantauan dan pentaksiran pencemaran air tanah. Artikel ini juga menggariskan satu pandangan holistik terhadap penyelesaian isu pencemaran air tanah melalui aplikasi teknik nuklear dan isotop berperanan sebagai alat yang signifikan dalam menjamin pengurusan alam sekitar yang lestari.
Kata kunci: Teknik nuklear, isotop, air tanah, sumber pencemaran
Abstract: Clean and sustainable groundwater is an important asset for human life and ecosystems. However, the threat of groundwater pollution is increasing as a result of human activities such as industrial, agricultural, and municipal. The objective of this review article is to examine how isotope techniques, as one of the nuclear techniques serve as an effective tool in studying, detecting, and understanding the issue of groundwater pollution stemming from anthropogenic activity on the surface. This article covers the description and discussion of the types of isotopes used in the detection of groundwater pollution and factors that influence the variation in the composition of isotopes in groundwater based on the findings of previous studies. In addition, this article also comments on the study of groundwater pollution using isotopes in the context of groundwater pollution assessment in Malaysia. This article serves as a guide or reference to researchers, environmental professionals, and water resources managers who want to understand and implement nuclear techniques in the monitoring and assessment of groundwater pollution. This article also outlines a holistic view on the resolution of groundwater pollution issues through the application of nuclear techniques and isotopes as a significant tool in ensuring sustainable environmental management.
Keywords: Isotope techniques, isotopes, groundwater, source of pollution
RUJUKAN
Ansari, M.A., Kumar, U.S., Noble, J., Akhtar, N., Akhtar, M.A., & Deodhar, A., 2023. Isotope hydrology tools in the assessment of arsenic contamination in groundwater: An overview. Chemosphere, 340, 139898. https://doi.org/10.1016/j. chemosphere.2023.139898.
Biddau, R., Dore, E., Pelo, S.D., Lorrai, M., Botti, P., Testa, M., & Cidu, R., 2023. Geochemistry, stable isotopes and statistic tools to estimate threshold and source of nitrate in groundwater (Sardinia, Italy). Water Research, 232, 119663. https://doi.org/10.1016/j.watres.2023.119663.
Blarasin, M., Matiatos, I., Cabrera, A., Lutri, V., Giacobone, D., Becher Quinodoz, F., Matteoda, E., Eric, C., Felizzia, J., & Giuliano, A., 2021. Characterization of groundwater dynamics and contamination in an unconfined aquifer using isotope techniques to evaluate domestic supply in an urban area. Journal of South American Earth Sciences, 110, 103360. https://doi.org/10.1016/j.jsames.2021.103360.
Böhlke, J.K., Smith, R.L., & Miller, D.N., 2006. Ammonium transport and recation in contaminated groundwater: Application of isotope tracers and isotope fractionation studies. Water Resources Research, 42, W05411. Doi:10.1029/2005WR004349.
Cao, X., Shi, Y., He, W., An, T., Chen, X., Zhang, Z., Liu, F., Zhao, Y., Zhou, P., Chen, C., He, J., & He, W., 2022. Impacts of anthropogenic groundwater recharge (AGR) on nitrate dynamics in a phreatic aquifer revealed by hydrochemical and isotopic technologies. Science of the Total Environment, 839, 156187. http://dx.doi.org/10.1016/j. scitotenv.2022.156187.
Carrey, R., Ballesté, E., Blanch, A.R., Lucena, F., Pons, P., López, J.M., Rull, M., Solá, J., Micola, N., Fraile, J., Garrido, T., Munné, Soler, A., & Otero, N., 2021. Combining multi-isotopic and molecular source tracking methods to identify nitrate pollution sources in surface and groundwater. Water Research, 188, 116537. https://doi.org/10.1016/j. watres.2020.116537.
Carrión-Mero, P., Montalván-Burbano, N., Herrera-Franco, G., Domínguez-Granda, L., Bravo-Montero, L., & Morante- Craballo, F., 2022. Research trends in groundwater and stable isotopes. Water, 14, 3173. https://doi.org/10.3390/ w14193173.
Chander, S., Paikaray, S., Bansal, S., Sharma, S., Sharma, K., Dhiman, D., & Deshpande, R.D., 2023. δ18O and δ2H isotopes, trace metals and major ions in groundwater around uranium and fluoride contaminated Indus valley Quaternary alluvial plain, SW Punjab, India: Implications on hydrogeochemical processes, irrigation use and source. Applied Geochemistry, 152, 105652. https://doi. org/10.1016/j.apgeochem.2023.105652.
Chen, F., Zhou, X., Lao, Q., Wang, S., Jin, G., Chen, C., & Zhu, Q., 2019. Dual isotopic evidence for nitrate sources and active biological transformation in the Northern South China Sea in summer. PloS ONE, 14(1), e0209287. https:// doi.org/10.1371/journal.pone.0209287.
Christofi, C., Bruggeman, A., Kuells, C., & Constantinou, C., 2020. Isotope hydrology and hydrogeochemical modeling of Troodos Fractured Aquifer, Cyprus: The development of hydrogeological description of observed water types. Applied Geochemistry, 123, 104780. https://doi.org/10.1016/j. apgeochem.2020.104780.
Dee, S., Bailey, A., Conroy, J.L., Atwood, A., Stevenson, S., Nusbaumer, J., & Noone, D., 2023. Water isotopes, climate variability, and the hydrological cycle: recent advanced and new frontiers. Environmental Research: Climate, 2, 022002. https://doi.org/10.1088/2752-5295/accbe1.
Delaygue, G., 2009. Oxygen Isotopes. In: Gornitz, V. (Ed.), Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. 1,049 p. https://doi.org/10.1007/978- 1-4020-4411-3_163.
Fadhullah, W., Yaacob, N.S., Syakir, M.I., Muhammad, S.A., Yue, F-J., & Li, S-L., 2020. Nitrate sources and processes in the surface water of a tropical reservoir by stable isotopes and mixing model. Science of The Total Environment, 700, 134517. https://doi.org/10.1016/j.scitotenv.2019.134517.
Gupta, S., Nandimandalam, J.R., Pant, D., Chatterjee, S., Ram, & P., 2023. Environmental isotope constraints and hydrogeochemical evolution of groundwater in the semi-arid national capital environs of Delhi, India. Urban Climate, 49, 101481. https://doi.org/10.1016/j.uclim.2023.101481.
He, S., Li, P., Su, F., Wang, D., & Ren, X., 2022. Identification and apportionment of shallow groundwater nitrate pollution in Weining Plain, northwest China, using hydrochemical indices, nitrate stable isotopes, and the new Bayesian stable isotope mixing model (MixSIAR). Environmental Pollution, 298, 118852. https://doi.org/10.1016/j.envpol.2022.118852.
Heiderscheidt, E., Tesfamariam, A., Marttila, H., Postila, H., Zilio, S., & Rossi, P.M., 2022. Stable water isotopes as a tool for assessing groundwater infiltration in sewage networks in cold climate conditions. Journal of Environmental Management, 302, 114107. https://doi.org/10.1016/j. jenvman.2021.114107.
Hermawan, O.R., Hosono, T., Yasumoto, J., Yasumoto, K., Song, K-H., Maruyama, R., Iijima, M., Yasumoto-Hirose, M., Takada, R., Hijikawa, K., & Shinjo, R., 2023. Effective use of farmland soil samples for N and O isotopic source fingerprinting of groundwater nitrate contamination in the subsurface dammed limestone aquifer, Southern Okinawa Island, Japan. Journal of Hydrology, 619, 129364. https:// doi.org/10.1016/j.jhydrol.2023.129364.
Hosono, T., Taniguchi, K., Rahman, A.T.M.S., Yamamoto, T., Takayama, K., Yu, Z-Q., Aihara, T., Ikehara, T., Amano, H., Tanimizu, M., & Nakagawa, K., 2023. Stable N and O isotopic indicators coupled with social data analysis revealed long-term shift in the cause of groundwater nitrate pollution: Insights into future water resource management. Ecological Indicators, 154, 110670. https:// doi.org/10.1016/j.ecolind.2023.110670.
Huang, P., Zhang, Y., Li, Y., Gao, H., Cui, M., & Chai, S., 2023. A multiple isotope (S, H, O and C) approach to estimate sulfate increasing mechanism of groundwater in coal mine area. Science of the Total Environment, 900, 165852. https:// doi.org/10.1016/j.scitotenv.2023.165852.
Huang, X-y., Zhang, D., Zhao, Z-q., Liu, Y-t., Meng, H-q., Zou, S., Ma, B-j., & Feng, Q-y., 2021. Determining hydrogeological and anthropogenic controls on N pollution in groundwater beneath piedmont alluvial fans using multi-isotope data. Journal of Geochemical Exploration, 229, 106844. https:// doi.org/10.1016/j.gexplo.2021.106844.
Hussein, R., Ahmed, M., & Aly, A.I., 2023. Tracking anthropogenic nitrogen-compound sources of surface and groundwater in southwestern Nile Delta: Hydrochemical, environmental isotopes, and modeling approach. Environmental Science and Pollution Research, 30, 22115-22136. https://doi. org/10.1007/s11356-022-23536-1.
International Atomic Energy Agency (IAEA), 2022. What are isotopes?. https://www.iaea.org/newscenter/news/what-are-isotopes. Accessed on 8th September 2023.
Jakóbczyk-Karpierz, S. & Ślósarczyk, K., 2022. Isotopic signature of anthropogenic sources of groundwater contamination with sulfate and its application to groundwater in a heavily urbanized and industrialized area (Upper Siliesia, Poland). Journal of Hydrology, 612, 128255. https://doi.org/10.1016/j. jhydrol.2022.128255.
Jiang, C., Chebf, L., Li, C., & Zheng, L., 2022. A hydrochemical and multi-isotopic study of groundwater sulfate origin and contribution in the coal mining area. Ecotoxicology and Environmental Safety, 248, 114286. https://doi. org/10.1016/j.ecoenv.2022.114286.
Jódar, J., Herms, I., Lambán, L.J., Martos-Rosillo, S., Herrera- Lameli, C., Urrutia, J., Soler, A., & Custodio, E., 2021. Isotopic content in high mountain karst aquifers as a proxy for climate change impact in Mediterranean zones: The Port del Comte karst aquifer (SE Pyrenees, Catalonia, Spain). Science of the Total Environment, 790, 148036. https://doi. org/10.1016/j.scitotenv.2021.148036.
Jung, Y-Y., Shin, W-J., Seo, K-H., Koh, D-C., Ko, K-S., & Lee, K-S., 2022. Spatial distributions of oxygen and hydrogen isotopes in multi-level groundwater across South Korea: A case study of mountainous regions. Science of the Total Environment, 812, 151428. https://doi.org/10.1016/j. scitotenv.2021.151428.
Li, C., Gao, X., Liu, Y., & Wang, Y., 2019b. Impact of anthropogenic activities on the enrichment of fluoride and salinity in groundwater in the Yuncheng Basin constrained by Cl/Br ratio, δ18O, δ2H, δ13C and δ7Li isotopes. Journal of Hydrology, 579, 124211. https://doi.org/10.1016/j. jhydrol.2019.124211.
Li, J., Shi, Z., Liu, M., Wang, M., Wang, G., Liu, F., & Wang, Y., 2021. Identifying anthropogenic sources of groundwater contamination by natural background levels and stable application in Pinggu basin, China. Journal of Hydrology, 596, 126092. https://doi.org/10.1016/j.jhydrol.2021.126092.
Li, Z., Yang, Q., Yang, Y., Ma, H., Wag, H., Luo, J., Bian, J., & Martin, J.D., 2019a. Isotop and geochemical interpretation of groundwater under the influences of anthropogenic activities. Journal of Hydrology, 576, 685-697. https://doi. org/10.1016/j.jhydrol.2019.06.037.
Li, Z., Yang, Q., Yang, Y., Ma, H., Wang, H., Luo, J., Bian, J., & Martin, J.D., 2019c. Isotopic and geochemical interpretation of groundwater under the infleunces of anthropogenic activities. Journal of Hydrology, 576, 685-697. https://doi. org/10.1016/j.jhydrol.2019.06.037.
Liu, J., Gao, Z., Wang, Z., Xu, X., Su, Q., Wang, S., Qu, W., & Xing, T., 2020. Hydrogeochemical processes and suitability assessment of groundwater in the Jiaodong Peninsula, China. Environmental Monitoring and Assessment, 192(6), 384. https://doi.org/10.1007/s10661-020-08356-5.
Liu, J., Yuan, J., Zhang, Y., Zhang, H., Luo, Y., & Su, Y., 2023. Identification of ammonium source for groundwater in the piedmont zone with strong runoff of the Hohhot Basin based on nitrogen isotope. Science of the Total Environment, 882, 163650. http://dx.doi.org/10.1016/j.scitotenv.2023.163650.
Mahamat Nour, A., Huneau, F., Mahamat Ali, A., Mahamat Saleh, H., Ngo Boum-Nkot, S., Nlend, B., Djebebe-Ndjiguim, C.L., Foto, E., Sanoussi, R., Araguas-Araguas, L., & Vysravna, Y., 2022. Shallow Quaternary groundwater in the Lake Chad basin is resilient to climate change but requires management strategy: Results of isotopic investigation. Science of the Total Environment, 851, 158152. http://dx.doi.org/10.1016/j. scitotenv.2022.158152.
Malkova, Y.O., Kovalenko, I.O., Dolin, V.V., Demikhov, Y.M., Panasiuk, M.I., Sosonna, N.V., Bagriy, S.M., Kuzmenko, E.D., Onyshchenko, I.P., Kumar, U.S., & Buzynnyi, M.G., 2023. Isotope composition of groundwater and surface waters in the area of the Dombrovsky quarry of Kalush- Golinsk deposit of potassium salts. Journal of Environmental Radioactivity, 257, 107083. https://doi.org/10.1016/j. jenvrad.2022.107083.
Mohamed, M.M., Parimalarenganayaki, S., Khan, Q., & Murad, A., 2021. Review on the use of environmental isotopes for groundwater recharge and evaporation studies in the GCC countries. Groundwater for Sustainable Development, 12, 100546. https://doi.org/10.1016/j.gsd.2021.100546.
Mostapa, R., Samuding, K., Daung, J.A.D., Hashim, M.M.M., & Pant, N., 2022. Assessment of groundwater recharge sources and their dynamics using environmental isotope and hydrochemical approaches in coastal aquifers of Peninsular Malaysia. ASM Science Journal, 17, 1-15. https://doi. org/10.32802/asmscj.2022.1280.
Niu, C., Zhai, T., Zhang, Q., Wang, H., & Xiao, L., 2021. Research advances in the analysis of nitrate pollution sources in a freshwater environment using δ15N-NO3- and δ18O-NO3-. International Journal of Environmental Research and Public Health,18, 11805. https://doi.org/10.3390/ijerph182211805.
Norrman, J., Sparrenbom, C.J., Berg, M., Nhan, D.D., Jacks, G., Harms-Ringdahl, P., Nhan, P.Q., & Rosqvist, H., 2015. Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope (δ15N) values. Applied Geochemistry, 61, 248-258. http://dx.doi.org/10.1016/j.apgeochem.2015.06.009.
Ouhamdouch, S., Bahir, M., Ouazar, D., & Zouari, K., 2022. Isotopic signature of groundwater and climate change within a semi-arid environment. Groundwater for Sustainable Development, 17, 100729. https://doi.org/10.1016/j. gsd.2022.100729.
Pandey, A., Padhya, V., Chakra, S., & Deshpande, R.D., 2023. Seasonality in groundwater recharge in Coastal Southwestern India and its hydrological implications based on stable isotopes (δ18O, δD). Physics and Chemistry of the Earth, 130, 103396. https://doi.org/10.1016/j.pce.2023.103396.
Ren, K., Pan, X., Peng, C., Chen, J., Li, J., & Zeng, J., 2023. Tracking contaminants in groundwater flowing across a river bottom within a complex karst system: Clues from hydrochemistry, stable isotopes, and tracer test. Journal of Environmental Management, 342, 118099. https://doi. org/10.1016/j.jenvman.2023.118099.
Rodushkin, I., Engström, E., Pontér, S., & Pennisi, M., 2022. Elemental stable isotope assessment of groundwater contamination: Recent developments. Current Opinion in Environmental Science & Health, 26, 100330. https://doi. org/10.1016/j.coesh.2022.100330.
Sankoh, A.A., Derkyi, N.S.A., Frazer-williams, R.A.D., Laar, C., & Kamara, I., 2022. A review on the application of isotopic techniques to trace groundwater pollution sources within developing countries. Water, 14, 35. https://doi.org/10.3390/ w14010035.
Shamsuddin, A.S., Syed Ismail, S.N., Othman, N.M.I., Zakaria, N.H., Abd Manan, T.S., Ibrahim, M.A., & Abdul Mutalib, M., 2023. Human health risk assessment of nitrate in private well waters of shallow quaternary alluvial aquifer. Environmental Geochemistry and Health, 45(11), 7741-7757. https://doi. org/10.1007/s10653-023-01671-z.
Snow, D., 2018. Quality control summary report nitrate-N isotope analysis: May – June 2018. United States Environmental Protection Agency (USEPA). https://www.epa.gov/wi/ nitrate-n-isotope-results-and-interpretation-and-quality-control-summary-report-nitrate-n.
Tanui, F., Olago, D., Ouma, & G., Kuria, Z., 2023. Hydrochemical and isotopic characteristics of the Lodwar Alluvial Aquifer System (LAAS) in Northwestern Kenya and implications for sustainable groundwater use in dryland urban areas. Journal of African Earth Sciences, 206, 105043. https://doi. org/10.1016/j.jafrearsci.2023.105043.
Vystavna, Y., Matiatos, I., & Wassenaar, L.I., 2021. Temperature and precipitation effects on the isotopic composition of global precipitation reveal long-term climate dynamics. Scientific Reports, 11, 18503. https://doi.org/10.1038/ s41598-021-98094-6.
Wright, S.N., & Novakowski, K.S., 2020. Hydrogeologic and climate drivers of water isotopes in fractured rock: A word of caution for the use of groundwater isoscapes in humid continental settings. Journal of Hydrology, 586, 124857. https://doi.org/10.1016/j.jhydrol.2020.124857.
Xia, C., Liu, Y., Meng, Y., Liu, G., Huang, X., Chen, Y., & Chen, K., 2023. Stable isotopes reveal the surface water-groundwater interaction and variation in young water fraction in an urbanized river zone. Urban Climate, 51, 101641. https:// doi.org/10.1016/j.uclim.2023.101641.
Xie, Z., Zhang, Y., Zhang, Z., & Huang, J., 2023. Nitrate removal mechanism in riparian groundwater in an intensified agricultural catchment. Agricultural Water Management, 280, 108223. https://doi.org/10.1016/j.agwat.2023.108223.
Yaacup, R., Wan Muhamad Tahir, W.Z., & Nasir, M.K., 2002. Penggunaan kaedah pengimejan keberintangan geoelektrik dan isotop sekitaran dalam kajian air resapan di empangan Durian Tunggal, Melaka. Geological Society of Malaysia Annual Geological Conference 2002, May 26-27, Kota Bharu, Kelantan, Malaysia.
Zhang, Q., Wang, H., & Wang, L., 2018. Tracing nitrate pollution sources and transformations in the over-exploited groundwater region of north China using stable isotopes. Journal of Contaminant Hydrology, 218, 1-9. https://doi. org/10/1016/j.jconhyd.2018.06.001.
Zhang, Q., Wang, H., Xu, Z., Li, G., Yang, M., & Liu, J., 2023. Quantitative identification of groundwater contamination sources by combining isotope tracer technique with PMF model in an arid area of northwestern China. Journal of Environmental Management, 325, 116588. https://doi. org/10.1016/j.jenvman.2022.116588.
Zhu, Y., Yang, Q., Wang, H., Yang, J., Zhang, X., Li, Z., & Martín, J.D., 2023. A hydrochemical and isotopic approach for source identification and health risk assessment of groundwater arsenic pollution in the central Yinchuan basin. Environmental Research, 231, 116153. https://doi. org/10.1016/j.envres.2023.116153.