Tectono-geomorphic evaluation of Sumatran faults in Bengkulu Segment, Indonesia: Implication to seismic hazard

Warta Geologi v51 no 1 UPDATED
Author : Anju Goldmoreast Marbun, Edy Sutriyono, Ugi Kurnia Gusti*
Publication : Warta Geologi
Page : 18-28
Volume Number : 51
Year : 2025
DOI : https://doi.org/10.7186/wg511202503

Warta Geologi, Vol. 51, No. 1, April 2025, pp. 18–28

Tectono-geomorphic evaluation of Sumatran faults in Bengkulu Segment, Indonesia: Implication to seismic hazard

Anju Goldmoreast Marbun, Edy Sutriyono, Ugi Kurnia Gusti*

Program Studi Teknik Geologi, Universitas Sriwijaya, Jalan Palembang-Prabumulih, KM 32 Inderalaya, Kabupaten Ogan Ilir, Sumatera Selatan 30662, Indonesia

* Corresponding author email address: ugikurnia@unsri.ac.id

Abstrak: Sumatera merupakan salah satu pulau di Indonesia yang dipengaruhi oleh kegiatan tektonik aktif, kerana dikawal oleh interaksi antara lempeng Indo-Australia dan Eurasia. Interaksi antara dua plat litosfera mengakibatkan kemunculan Barisan Orogeny, di mana kawasan lembangan dinaikkan dan sesar aktif dibangunkan di sepanjang pulau. Kajian ini mengkaji peranan Sesar Sumatera dan Sesar Mentawai yang bertanggungjawab terhadap evolusi Lembangan Bengkulu. Penilaian tertumpu pada analisis morfografi Sesar Sumatera (SF) Segmen Bengkulu dan Sesar Alas (AF) dengan pergerakan dip-slip di Renah Gajah Mati I dan sekitarnya di Kabupaten Seluma, Bengkulu. Parameter yang digunakan termasuk “lebar lantai lembah kepada nisbah ketinggian lembah (Vf), pemanjangan lembangan (Re), kamiran hipsometrik (HI), nisbah isipadu kepada kawasan (Rva), dan sinuositi hadapan gunung (Smf)”. Hasil analisis menunjukkan AF mempunyai nilai naik yang agak sederhana tinggi berdasarkan nilai plot indeks aktiviti tektonik (IAT) dan ini menunjukkan kawasan tersebut berpotensi terjejas oleh bahaya seismik.

Kata kunci: Tektonik, morfografi, indeks aktivas tektonik, Sesar Alas, Sesar Sumatera

Abstract: Sumatra is one of the islands in Indonesia that is affected by tectonic activitys, because it is controlled by the interaction between the Indo-Australian and Eurasian plates. The interaction between the two lithospheric plates resulted in the emergence of the Barisan Orogeny, where the basin area was uplifted, and active faults were developed along the island. This study examines the role of the Sumatran Fault System (SFS) and the Mentawai Alas Fault System which are responsible for the evolution of the Bengkulu Basin. The evaluation focused on geomorphic analysis of the Bengkulu Segment of the Sumatran Fault (SF) SFS and the Alas Fault (AF) with dip-slip movements in the Renah Gajah Mati and surrounding areas of Seluma Regency, Bengkulu. The parameters used include “valley floor width to valley height ratio (Vf), basin elongation (Re), hypsometric integral (HI), volume to area ratio (Rva), and mountain front sinuosity (Smf)”. The results of the analysis show that AF has a relatively medium-high uplift value based on the value of the index of tectonic activity (IAT) plot and this indicates that the area is potentially affected by seismic hazards.

Keywords: Tectonics, morphography, index of tectonic activity, Alas Fault, Sumatran Fault

References:

Amin, T.C., Gafoer, S., & Pardede, R., 1992. Geological Map Sheet Bengkulu, Sumatra. Geological Research and Development Center, Bandung, Scale 1 :250.000, 1 page.

Amin, T.C., Kusnama, Rustandi, E., & Gafoer, S., 1993. Geological Map Sheet Manna & Enggano, Sumatera. Geological Research and Development Center, Bandung, Scale 1 : 250.000, 1 page.

Ardiansyah, S., 2014. Cycle and Estimated Earthquake Occurrence Model in Bengkulu Region. Jurnal Fisika dan Aplikasinya, 10(2), 68-73.

Asdak, C., 2010. Hydrology and Watershed Management: Edisi Revisi V. Gadjah Mada University Press, Yogyakarta. 187 p.

Barber, A.J. & Crow, M.J., 2003. Evaluation of plate tectonic models for the development of Sumatra. Gondwana Research, 20, 1–28.

Barber, A.J., Crow, M.J., & Milsom, J.S., 2005. Sumatera: Geology, Resources and Tectonic Evolution, Geological Society Memoirs No. 31, London.

Bull, W.B., & McFadden, L.D., 1977. Tectonic geomorphology North and South of the Garlock Fault, California. In: Doehring, D.O. (Ed.), Geomorphology in AridRegions: A Proceedings Volume of the 8th Annual Geomorphology Symposium. State University of New York, Binghamton, 115–138.

Bonnet, S., & Crave, A., 2003. Landscape response to climate change: Insights from experimental modeling and implications for tectonic versus climatic uplift of topography. Geology, 31(2), 123-126.

Boulton, S.J., 2020. Geomorphic response to differential uplift: River long profiles and knickpoints from Guadalcanal and Makira (Solomon Islands). Frontiers in Earth Science, 8, 10.

Cannon, P.J., 1976. Generation of Explicit Parameters for a Quantitative Geomorphic Study of The Mill Creek Drainage Basin. Oklahoma Geology Notes, 36, 3–16.

Chebotarev, A., Arzhannikova, A., & Arzhannikov, S., 2021. Long-term Throw Rates and Landscape Response to Tectonic Activity of The Tunka Fault (Baikal Rift) Based on Morphometry, Russia. Tectonophysics, 810, 228864.

Chen, Y.-C., Sung, Q., & Cheng, K.-Y., 2003. Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology, 56(1–2), 109–137. https://doi.org/10.1016/S0169-555X(03)00059-X.

Cheng, Y., He, C., Rao, G., Yan. B., Lin, A., Hu, J., Yu, Y., & Yao, Q., 2018. Geomorphological and structural characterization of the southern Weihe Graben, central China: Implications for fault segmentation, China. Tectonophysics, 722, 11-24.

Cuong, N. Q. & Zuchiewicz, W. A., 2001. Morphotectonic properties of the Lo River Fault near Tam Dao in North Vietnam. Nat. Hazards Earth Syst. Sci., 1, 15–22. https:// doi.org/10.5194/nhess-1-15-2001, 2001.

Daryono, M.R., Natawidjaja, D.H., Sapiie, B., & Cummins, P., 2019. Earthquake Geology of Lembang Fault, West Java, Indonesia. Tectonophysics, 751, 180-191.

El Hamdouni, R., Irigary, C., Fernández, T., Chacón, J., & Keller, E.A., 2008. Assesment of Relative Active Tectonics, Southwest Border of Sierra Nevada (Southern Spain). Geomorphology, 96, 150-173.

Ellis, M.A., & Barnes, J.B., 2015. A global perspective on the topographic response to fault growth. Geosphere, 11(4), 1008–1023.

Fajri, S.N., Sutriyono, E., & Nalendra, S., 2019. Lineament analysis of digital elevation model to identification of geological structure in Northern Manna Sub-Basin, Bengkulu. International Conference on Architecture and Civil Engineering (ICACE), OP Conf. Ser.: Mater. Sci. Eng., 636 012001.

Figueiredo, P.M., Rockwell, T.K., Cabral, J., & Ponte Lira, C., 2019. Morphotectonics in a low tectonic rate area: Analysis of the southern Portuguese Atlantic coastal region. Geomorphology, 326, 132–151. https://doi.org/10.1016/j. geomorph.2018.02.019.

Fossen, H., 2010. Structural Geology. Cambridge University Press, New York. 463 p.

Frankel, K.L., & Pazzaglia, F.J., 2005. Tectonic Geomorphology, Drainage Basin Metrics, and Active Mountain Fronts. Geografia Fisica e Dinamica Quaternaria, 28(1), 7–21.

Gusti, U.K., Peace, A.L., & Rimando, J., 2023. Tectonic geomorphology of the Ottawa-Bonnechere Graben, Eastern Canada: implications for regional uplift and intraplate seismicity. Canadian Journal of Earth Sciences, 60, 635–652. https://doi.org/10.1139/CJES-2022-0137.

Hall, D.M., Buff, B.A., Courbe, M.C., Seurbert, B.W., Siahaan, M., & Wirabudi, A.D., 1993. The Southern Fore-Arc Zone of Sumatera: Cainozoinc Basin-Forming Tectonism and Hidrocarbon Potensial. Proceedings 22nd Annual Convention, IPA, 319-334.

Keller & Pinter, 2002. Active Tectonics: earthquakes, uplift, and landscape. Prentice Hall, Upper Saddle River, NJ. 362 p.

Kusnama, Mangga S.A. & Sukarna, D., 1992. Tertiary Stratigraphy and Tectonic Evolution of Southern Sumatra. Geological Society of Malaysia-Circum-Pacific For Energy And Mineral Resources Tectonic Framework And Energy Resource of The Western Margin of Pacific Basin, Kuala Lumpur, 143-152.

Mukti, M.M., Singh, S.C., Deighton, I., Hananto, N.D., Moeremans, R., & Permana, H., 2012. Structural evolution of backthrusting in the Mentawai Fault Zone, Offshore Sumatran Forearc. Geochemistry, Geophys. Geosystems, 13, 1–21.

Psomiadis, E., Charizopoulos, N., Soulis, K.X., & Efthimiou, N., 2020. Investigating the correlation of tectonic and morphometric characteristics with the hydrological response in a Greek river catchment using earth observation and geospatial analysis techniques. Geosci., 10, 1–30. https:// doi.org/10.3390/geosciences10090377.

Pulonggono, A., Haryo, S.A., & Kosuma, C.G. 1992. Pre-Tertiary Fault System as a Framework of The South Sumatera Basin; a Study of Sar-maps. Proceedings 21st Annual Convention, IPA, 339-360.

Putri, D.A., & Hastuti, E.W., 2020. Morphotectonic analysis of Tanjung Bungo area based on geological structure control, Central Sumatera Basin. Proceedings Indonesian Petroleum Association, IPA20-SG-254.

Ramírez-Herrera, M.T. 1998. Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surface Processes and Landforms, 23, 317–332.

Rockwell, T.K., Keller, E.A., & Jhonson, D.L., 1985. Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. In: Morisawa, M. (Ed.), Tectonic Geomorphology. Proceedings of the 15th Annual Geomorphology Symposium. Allen and Unwin Publishers, Boston, 183 – 207.

Saber, R., Caglayan, A., & Isik, V., 2018. Relative tectonic activity assessment and kinematic analysis of the North Bozgush fault Zone, NW Iran. J. Asian Earth Sci., 164, 219–236. https://doi.org/10.1016/J.JSEAES.2018.06.023.

Saber, R., Isik, V., & Caglayan, A., 2020. Tectonic geomorphology of the Aras drainage basin (NW Iran): Implications for the recent activity of the Aras fault zone. Geol. J., 55, 5022–5048. https://doi.org/10.1002/GJ.3724.

Sahara, R., Fadhli, M., & Gusti, U.K., 2022. Morphotectonic Analysis of South Solok Area: Implication for Geothermal Manifestation and Relative Tectonic Activity. Journal of Geology Sriwijaya, 1, 37–46. https://doi.org/10.5281/ ZENODO.8240473.

Schumm, S.A., 1956. Evolution of drainage systems and slopes in badlands at PerthAmboy, New Jersey. Geol. Soc. Am. Bull., 67(5), 597–646.

Schumm, S.A. & Parker, R.S., 1973. Implications of complex response of drainage systems for Quaternary alluvial stratigraphy. Nature, Phys. Sci., 243, 99-100.

Sieh, K. & Natawidjaja, D., 2000. Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Research: Solid Earth, 105(B12), 28295-28326.

Snyder, N.P., Whipple, K.X., Tucker, G.E., & Merritts, D.J., 2000. Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geol. Soc. Am. Bull., 112, 1250–1263. https://doi.org/10.1130/0016- 7606(2000)112<1250:LRTTFD>2.0.CO;2.

Simandjuntak, T.O. & Barber, A.J., 1996. Contrasting tectonic styles in the Neogen orogenic belts of Indonesia. In: Hall, R. & Blundell, D., (Eds.), Tectonic Evolution of Southeast Asia. Geological Society Sprecial Publication, 106, 185-201.

Strahler, A.N., 1952. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11), 1117-1142.

Sunarto, S., 2004. Geomorphic changes in coastal area surround Muria Volcano. Doctoral dissertation, Gadjah Mada University Yogyakarta, Indonesia.

Yani, S., & Sutriyono, E., 2020. The structural pattern of the Kemang Manis area and its surroundings, Seluma Regency, Bengkulu. Journal of Earth and Energy, 1, 43-49.

Yıldırım, C., 2014. Relative tectonic activity assessment of the Tuz Gölü Fault Zone; Central Anatolia, Turkey. Tectonophysics, 630, 183–192. https://doi.org/10.1016/j.tecto.2014.05.023.

Yulihanto, B., Situmorang, B., Nunjajadi, A., & Sain, B., 1995. Structural Analysis of The Onshore Bengkulu Forearc Basin and its Implication for Future Hydrocarbon Exploration Activity. Proceedings Indonesian Petroleum Association, 24th Annual Convention, 85-96.

Zuhri, W., & Sutriyono, E., 2020. Late Neogen Deformation of Rock Succession at Renah Gajah Mati I Region Seluma Regency in Bengkulu. Jurnal Teknologi, 82(2), 77-83.

Manuscript received 19 March 2024;
Received in revised form 20 June 2024;
Accepted 31 January 2025
Available online 30 April 2025

DOI : https://doi.org/10.7186/wg511202503

0126-5539; 2682-7549 / Published by the Geological Society of Malaysia.
© 2025 by the Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC-BY) License 4.0